>>>

>>>

 

.


: . . .

 

 

 

1. Lawton, E. , Durability of

Concrete Pavement: Experiences in

New York State. Proc. ACI 35:561

(1939).

2. KHeger, P., Air Entraining Admixtures. ASTM, STP 169B: 787 (1978).

3. AC] Manual of Concrete Practice, Part 1 (1982).

4. PCA, Design and Control oj Concrete Mixtures, 12th ed., Portland Cement Assoc, Skokie, 1L (1979).

5. Powers, . , The Properties of Fresh Concrete, New York: John Wiley & Sons, Inc. (1968).

6. Rixom, M. R., Chemical Admixtures for Concrete, London: E. & F. N. Spon Ltd.; New York: John Wiley & Sons, Inc. (1978).

7. Highway Research Board, Ad

mixtures for Concrete, An Annotated

Bibliography, Washington: Natl. Acad. of Sciences (1965).

8. Moilliet, J. L., Collie, ., and

Black, W., Surface Activity, Princeton,

NJ: D. Van Nostrand Co. (1961).

9. Schwartz, A. M., and Perry, J. W.,

Surface Active Agents, New York:

Interscience (1949).

10. Rosen, M. J., Surfactants and

Interfacial Phenomena, New York:

John Wiley & Sons, Inc. (1978).

11. Shinoda, K.., Nakagawa, .,

Tamamushi, ., and Isemura, .,

Colloidal Surfactants, New York: Aca

demic Press (1963).

12. Jackson, F. H., and Timms,

A. G., Evaluation of Air Entraining

Admixtures for Concrete. Public Roads

27:259 (1954).

13. ASTM, Annual Book of Standards, Part 13, Philadelphia: American Society for Testing and Materials.

14. Concrete '83 Sourcebook, Addison, IL: Concrete Construction Publications, Inc. (1983).

15. Cebeci, O. Z., Pore Structure of Air Endtrained Hardened Cement. Paste. Cem. Concr. Res. 11: 257 (1981).

16. Mielenz, R. C, Use of Surface Active Agents in Concrete. Proc, Fifth Intnl. Sympos. Chem. Cement (Tokyo), Part IV: 1 (1969).

17. Bruere, G. M., Fundamental

Action of Air Entraining Agents.

RILEM Intnl. Sympos. on Admixtures

(Brussels) III: 5 (1967).

18. Mielenz, R. C, Wolkodoff,

V. E., Backstrom, J. E., and Flack,

H. L., Origin, Evolution, and Effects

ot the Air Void System in Concrete.

Part 1 Entrained Air in Unhardened

Concrete. Proc. AC1 55:95 (1958).

19. Bikerman, J. J., Physical Sur faces, New York: Academic Press (1970).

20. Bruere, G. M., Air Entraining Actions of Anionic Surfactants in Portland Cement Pastes. /. Appl. Chem. Biotechnol. 21: 61 (1971).

21. Lauer, K. R., Mechanism of Air Entrainment in Mortars, Thesis, Purdue Univ. (1960).

22. Brahma, S. P., The Influence of Film Factors on Air Entrainment of Concrete, Thesis, Purdue Univ. (1963).

23. Bruere, G. M., The Effect of Type of Surface Active Agent on Spacing Factors and Surface Areas of Entrained Bubbles in Cement Pastes. Australian J. Appl. Sci. 11: 289 (1960).

24. Bruere, G. M., Air Entrainment in Cement and Silica Pastes. Proc. AC1 51: 905 (1955).

25. Bruere, G. M., Rearrangement of Bubble Sizes in Air Entrained Cement Pastes During Setting. Australian J. Appl. Sci. 13: 222 (1962).

26. Klieger, P., Further Studies of the Effect of Entrained Air on Strength and Durability of Concrete with Various Sizes of Aggregate. Highway Res. Board Bull. 128: 1 (1956).

27. Greening, N. R., Some Causes for Variation in Required Amount of Air Entraining Agent in Portland Cement Mortars. /. PCA Res. Dev. Labs. 9, No. 2: 22 (1967).

28. Pistilli, M. F., Air Void Parameters Developed by Air Entraining Admixtures, as Influenced by Soluble Alkalis from Fly Ash and Portland Cement. Proc. AC1 80; 217 (1983).

29. Scripture, E. W. and Litwino-wicz, F. J., Effects of Mixing Time, Size of Batch and Brand of Cement on Air Entrainment. Proc. AC] 45: 653 (1949).

30. Backstrom, J. E., Burrows,

R. W., Mielenz, R. C, and Wolkodoff,

V. E., Origin, Evolution, and Effects

of the Air Void System in Concrete.

Part 3Influence of Water-Cement

Ratio and Compaction. Proc. AC1 55:

359 (1958).

31. Hollon, G. W. and Prior, M. E.,

Factors Influencing Proportioning of

Air Entrained Concrete. ACI Spec. Pub.

46: 11 (1974).

32. Tattersall, G. H., Workability of Concrete, London: Cement and Concrete Assoc. (1976).

33. Popovics, S., Fundamentals of Portland Cement Concrete: A Quantitative Approach, Vol. 1 Fresh Concrete, New York: John Wiley & Sons, Inc.

(1982).

34. PCA, Cement Mason's Manual, Skokie, IL: Portland Cement Assoc. (1960).

35. Glasstone, S., Textbook of Physical Chemistry, 2nd ed., New York: D. Van Nostrand Co. Inc. (1946).

36. Adamson, A. W., A. Textbook of Physical Chemistry, New York: Academic Press (1973).

37. Fagerlund, G., The Significance of Critical Degrees of Saturation at Freezing of Porous and Brittle Materials. ACI Spec. Pub. 47: 13 (1975).

38. Mac Innis, . and Beaudoin,

J. J., Effect of Degree of Saturation

on the Frost Resistance of Mortar

Mixes. Proc. ACI 65: 203 (1968).

39. Powers, . , A Working

Hypothesis for Further Studies of Frost

Resistance of Concrete. Proc. ACI

41: 245 (1945).

40. Powers, T. C, Copeland, L. E.,

Hayes, J. C, and Mann, H. M., Per

meability of Portland Cement Paste.

Proc. ACI 51: 285 (1954).

41. Powers, . , and Helmuth, R. A., Theory of Volume Changes in Hardened Portland Cement Pastes During Freezing. Proc. Highway Res. Board 32: 285 (1953).

42. Powers, . , Freezing Effects in Concrete, ACI Spec. Pub. 47: 1 (1975).

43. Beaudoin, J. J., and Maclnnis, C, The Mechanism of Frost Damage in Hardened Cement Paste. Cem. Concr. Res. 4: 139 (1974).

44. Diamond, S., Effects of Two

Danish Flyashes on Alkali Contents of

Pore Solutions of Cement-Flyash Pastes.

Cem. Concr. Res. 11: 383 (1981).

45. Diamond, S, A Review of Alkali

Silica Reaction and Expansion Mecha

nisms. 1. Alkalis in Cements and in

Concrete Pore Solutions. Cem. Concr.

Res. 5: 329 (1975).

46. Verbeck, G. and Klieger, P., Studies of Salt Scaling of Concrete. Highway Res. Board Bull. 150: 1 (1956).

47. Helmuth, R. A., Capillary Size Restrictions on Ice Formation in Hardened Portland Cement Pastes. Proc. Fourth Intnl. Sympos. Chem. Cement (Washington): 855 (1962).

48. Setzer, M. J., Abnormal Freezing of Water in Hardened Cement Paste. Private communication.

49. De Fontenay, and Selle-vold, E. J., Ice Formation in Hardened Cement Paste. 1. Mature Water Saturated Pastes. ASTM STP 691: 425 (1980).

50. Litvan, G. G., Freeze Thaw Durability of Porous Building Materials. ASTM STP 691: 455 (1980).

51. Verbeck, G. and Landgren, R., Influence of Physical Characteristics of Aggregates on Frost Resistance of Concrete. Proc. ASTM 60: 1063 (I960).

52. Dolch, W. L., Porosity. ASTM STP 169B: 646 (1978).

53. ASTM, Annual Book of Standards, Part 14, Philadelphia: American Society for Testing and Materials.

54. Hilliard, J. E., Measurement of

Volume in Volume. Chap. 3 in: De Hoff,

R. T. and Rhmes, F. N., Quantitative

Microscopy, New Jork: McGray Hill

Book Co. (1968).

55. Powers, . , The Air Re

quirements of Frost Resistant Concrete.

Proc. Highway Res. Board 29: 184 (1949).

56. Backstrom, J. E., Burrows, R. W., Mielenz, R. C, and Wolkodoff, V. E., Origin, Evolution, and Effects of the Air Void System in Concrete. Part 2 Influence of Type and Amount of Air Entraining Agent. Proc. ACI 55: 261 (1958).

57. Lord, G. W. and Willis, T. F., Calculation of Air Bubble Size Distribution from Results of a Rosiwal Traverse of Aerated Concrete. ASTM Bull. 177: 56 (Oct. 1951).

58. Philleo, R. E., Discussion of previous ref. (57). ASTM Bull. 179: 73 (Jan. 1952).

59. Philleo, R. E., A Method for Analyzing Void Distribution in Air Entrained Concrete. Unpublished report, PCA (May 1955); Cement, Concrete, and Aggregates 5: 128 (1983).

60. Manning, D. G., Where Have All the Bubbles Gone? Concrete International: 99 (Aug. 1980).

61. Larson, T. D., Cady, P. D., and Malloy, J. J., The Protected Paste Volume Concept Using New Air Void Measurement and Distribution Techniques. /. Materials 2: 202 (1967); Report, Pennsylvania State Univ., Dept. of Civil Engineering (1966).

62. Pigeon, M. and Lachance, M., Critical Air Void Spacing Factors for Concretes Submitted to Slow Freeze Thaw Cycles. Proc. ACI 78: 282 (1981).

63. Yudenfreund, M., Odler, 1., and Brunauer, S., Hardened Portland Cement Pastes of Low Porosity. 1. Materials and Experimental Methods. Cem. Concr. Res. 2: 313 (1972).

64. Coleman, S. E., Low Porosity High Strength Concrete /or Highway Bridge Decks, Thesis, Purdue University (1981).

65. Litvan, G. G. and Sereda, P. J., Particulate Admixture for Enhanced Freeze Thaw Resistance of Concrete. Cem. Consr. Res. 8: 53 (1978).

66. Popovics, S., Effect of Porosity

on the Strength of Concrete. /. Mate rials 4: 356 (1969).

67. Neville, A. M., Creep of Con

crete: Plain, Reinforced and Prestre-

ssed Amsterdam: North-Holland Pub

lishing Co. (1970).

68. Dolch, W. L., Studies of Limesto

ne Aggregates by Fluid Flow Methods.

Proc ASTM 59: 1204 (1959).

69. Verbeck, G. J., Field and Laboratory Studies of the Sulfate Resistance of Concrete, in: Performance of Concrete, pp. 113-125, Toronto: Univ. of Toronto Press (1968).

70. Stark, D., Longtime Study of Concrete Durability in Sulfate Soils. ACI Spec. Pub. 77: 21 (1982).

71. Vivian, H. E., Studies in Cement Aggregate Reaction. 111. The Effect of Void Space on Mortar Expansion. C.S.I.R.O. (Australia) Bull. 229: 55 (1947).

72. McCoy, W. J., and Caldwell, A. G., New Approach to Inhibiting Alkali Aggregate Expansion. Proc. ACI 47: 693 (1951).

73. Rosen, M. J. and Goldsmith, H. A., Systematic Analysis of Surface Active Agents, 2nd ed. New York: John Wiley & Sons, Inc. (1972).

74. Hime, W. G., Mivelaz, W. F. and Connoly, J. D., Use of Infrared Spectrophotometry for the Detection and Identification of Organic Additions in Cement and Admixtures in Hardened Concrete. ASTM STP 395: 18 (1966).

75. Figg, J. W. and Bowden, S. R., The Analysis of Concretes, London, HMSO (1971).

76. Ramachandran V. S. Personal communications.

 

: " "

 

:

 

        

 

Ѩ . , ,

 

: , ,

,

,

( )

( )

600/3

1000/3

-S11

--

-11

(PAKKASBETONI)

-

250, 300

S 100

( , , .)

( 10178)

().

-SI

()

()

( 969)

( 965)

( 15825)

( 22266)

400 20

( 1581)

( 25328)

- ( )

.

-

 

-

PERI

.

,

TRIO 330

PERI MULTIFLEX

MULTIFLEX

( )

( )

MULTIFLEX

UNIPORTAL

,

MULTIPROP

MULTIFLEX

- ( ϻ)

000 -û

Alumix

ѻ

-

ϻ

PRIMO

BAUMA MONOTUB DD

DEUTSCHE DOKA

DOKAFLEX

DOKAFLEX 20

FRAMAX

FARESIN

20

MEVA

PERI

TRIO

- DOMINO 250, DOMINO 300

HANDSET

- VARIO GT 24

MULTIPROP

ST100

SKYDECK

THYSSEN HUENNEBECK

OUTINORD

RINGER

DALLI

̻

ѻ

PLASTBAU

-

ݻ

. 111-15-76

III-15-76

III-B.4-72

III-15-76

111-15-76

111-15-76

5-76

111-15-76

-15-76

-15-76

111-15-76

 

, TOWER 60, 80 100 Tecwill ()

COBRA 40, 60 80 Tecwill ()

Export KOMZ-Export

-3 ( ) 345 ()

-2 345

- -20 һ ()

-1200 2000

-15 һ ()

-134 ()

-145 ()

һ ()

12 120 3/

60 430 . - ѻ ()

ѻ ()

-1 ()

-174 ()

-, -101, -116, -174 ()

, -ʻ ()

-125 -140 ATIKA Maschinenfabrik ()

-0,125 - ()

130, 150 165 ()

135, 155, 175, B250S, B350S 350. ()

-1479 ()

- ( ), --1 ( ) ()

500 3000 . -16, -16 , ()

-91 ()

-176 ()

-185 ()

BHS SCHWING Stetter ()

-550 ѻ ()

-800 -1200 -ʻ ()

-, -302, -230 ()

()

-133, -148. - -133 - , -148 - ()

-142, -23, -80, -169, -35, -500, -246 -238 ()

-141 ()

-146 ()

-250, -750 -1 ()

-773, -951, -868, -81

-97, -3, -1, -163 -1 ()

-169 300 ()

-80-01 -80-02 , ()

-138, -146, -1650

26

-169, -186, -250, -500 һ

Stetter ()

-1510 (-33) ()

-210, -46, 150, 200 -ʻ ()

()

-97 һ ()

-97- һ ()

1,8 3 345 ()

345 ()

- 20 . .. ()

- ()

- -1 ()

- -1 ()

-137-01 ()

() һ ()

һ ()

һ ()

() 345 ()

. ()

() , ()

-1500-1 ()

, , 345 ()

-1 һ ()

, , һ ()

-1200, -800 һ ()

-260, -280, -2125 345 ()

345 ()

- 26

INTERCON

-170-1 ()

-170-3 ()

-126 ()

CIFA K2-X 32 ()

Pulsar (GBS machine)

Putzmeister

KVM 34 XG (SCHWING)

Magnum CIFA ()

-. - CIFA ()

Putzmeister ()

2000 HDR (SCHWING)

1500 HDR (SCHWING)

1000 R (SCHWING)

Pneumix PX

-207. ()

. EL TREMIX ()

ELX. TREMIX ( - )

MINIVIB. TREMIX ( - )

MAXIVIB. TREMIX ( - )

-95 ()

-78 ()

-117, -75, -116, -113 ()

-103 ()

-263 ()

AVPI ()

MTR35, 50V, MT 63W, 70V, 72FW, 76D

MVR MVC

SVE TREMIX ( - )

SME (SMP) 100. TREMIX ( - )

SME (SMP) 150 TREMIX ( - )

TECHNO ()

4001. TREMIX ( - )

- FP

.

()

5 3

6 3

7-8 3

-

 

. ,

, , ()

, -

, ,

35

- 10

.

...

2

.

...30

.

.

.

1

400x400 1.020-1/83 1.20-1/87

400x400 -04

450 600 1.020-1/83 1.20-1/87

450 -04

, .

, ,

, -

,

.

()

 

,

.

.

 

.

-

 

.

,

-

 

.

 

 

 

 

 

 

 

 

 

.

,

-

()

 

.

 

().

( )

 

( , )

-8, -9 ( )

-11 ()

-12 ( )

- -15 ( )

- S3X ()

- SL ()

. 34, 34 ()

- -200 ( )

-300 (, )

-600 ()

Ļ

1 ( )

( )

( )

, ( )

. - ( )

-

ܻ ( )

80 ( )

315 ()

325 ()

415 ()

ALFA GYPS. ѻ ( )

̻ ( )

ATLAS. TERPLAN N ( )

SAM 200 ( )

ATOFINDLEY. Roxol Flex ( )

Roxol Express ( )

Roxol Express ( )

BOSTIK ( )

BOSTIK ECOTAK FIBER ( )

BOSTIK ECOTAK KOMBI ( )

BOSTIK FLUIT ( )

BOSTIK FIN ( )

BOSTIK FIBER ( )

BOSTIK CROW ( )

BOSTIK EXPRESS ( )

BOSTIK 6000 ()

λ ( )

Emaco S66

Emaco S88

Emaco S90

HENKEL BAUTECNIC. CN 72 ( , - 2-10 )

CN 72 ( , 4-50 )

CN 72 ( , 5-30 )

Thomsit DD ( )

Thomsit DH ( )

Thomsit DX ( )

77 ( )

90 ( )

( )

ϻ . Vetonit 1000 ( )

Vetonit 3000 ( )

Vetonit 3300 ( )

Vetonit 4000 ( )

Vetonit 5000 ()

Vetonit 5500 ()

Vetonit 6000 ()

Vetonit Self Level Plus ( )

Vetonit Vaateri Plus ( )

Vetonit Self Level Renovation ( )

Vetonit Self Level Scryde ( )

OY SCAN MIX AB. Scan Floor 100 Standart ( )

CONFLOW BASE Standard, CONFLOW BASE Super ( )

CONFLOW TOP standart, CONFLOW TOP super ( )

SCAN REND FINE BASE ( )

SCANREND FILL HYDROLIC ( )

 

(, , )

 

(). 100 200

ͻ

һ

 

. BARTELL B424

BARTELL B475

BARTELL B436

BARTELL B446

.





Rambler's Top100