Способы уплотнения бетонной смеси. Вибрирование — уплотнение бетонной смеси

  

Вся электронная библиотека >>>

Содержание книги >>>

 

Строительство

Строительные материалы и изделия


Раздел: Быт. Хозяйство. Строительство. Техника

 

§ 11.1. Способы уплотнения бетонной смеси

 

 

• Одно из важнейших свойств бетонной смеси — способность пластически растекаться под действием собственной массы или приложенной к ней нагрузки. Это и определяет сравнительную легкость изготовления из бетонной смеси изделий самого разнообразного профиля и возможность применения для ее уплотнения различных способов. При этом способ уплотнения и свойства смеси (ее подвижность или текучесть) находятся в тесной связи. Так, жесткие нетекучие смеси требуют энергичного уплотнения, и при формовании из них изделий следует применять интенсивную вибрацию или вибрацию с дополнительным прессованием (при-грузом). Возможны также и другие способы уплотнения жестких смесей — трамбование, прессование, прокат.

Подвижные смеси легко и эффективно уплотняются вибрацией. Применение же сжимающих (прессующих) видов уплотнения — прессования, проката, а также и трамбования—для таких смесей непригодно. Под действием значительных прессующих усилий или часто повторяющихся ударов трамбовки смесь будет легко вытекать из-под штампа или разбрызгиваться трамбовкой.

Литые смеси способны уплотняться под действием собственной массы. Для повышения эффекта уплотнения их иногда подвергают кратковременной вибрации.

Таким образом, могут быть выделены следующие способы Уплотнения бетонных смесей: вибрирование, прессование, прокат, трамбование и литье. Наиболее эффективным как в техническом, так и в экономическом отношениях является способ вибрирования. Его успешно применяют также в сочетании с другими способами механического уплотнения — трамбованием (вибротрамбование} прессованием (вибропрессование), прокатом (вибропрокат). ра'' новидностью механических способов уплотнения подвижных бетонных смесей является центрифугирование, используемое при формовании полых изделий трубчатого сечения. Хорошие результаты в отношении получения бетона высокого качества дает вакуумирование смеси в процессе ее механического уплотнения (преимущественно вибрированием), однако значительная продолжительность операции вакуумирования существенно снижает ее технико-экономический эффект, и поэтому этот способ мало распространен в технологии сборного железобетона.

 

 

Рассмотрим   кратко   сущность  приведенных   выше   способов уплотнения бетонных смесей.

• Вибрирование — уплотнение бетонной смеси в результате передачи ей часто повторяющихся вынужденных колебаний, в совокупности выражающихся встряхиванием. В каждый момент встряхивания частицы бетонной смеси находятся как бы в подвешенном состоянии и нарушается связь их с другими частицами. При последующем действии силы толчка частицы под собственной массой падают и занимают при этом более выгодное положение, при котором на них в меньшей степени могут воздействовать толчки. Это отвечает условию наиболее плотной их упаковки среди других, что в конечном итоге приводит к получению плотной бетонной смеси. Второй причиной уплотнения бетонной смеси при вибрировании является свойство переходить во временно текучее состояние под действием приложенных к ней внешних сил, которое называется тиксотропностью. Будучи в жидком состоянии, бетонная смесь при вибрировании начинает растекаться, приобретая конфигура- г цию формы, и под действием собственной массы уплотняться. ,' Третья причина уплотнения определяет высокие технические свой- ^ ства бетона.

Высокая степень уплотнения бетонной смеси вибрированием | достигается применением оборудования незначительной мощности. Например, бетонные массивы емкостью несколько кубометров уплотняют вибраторами с мощностью привода всего  1... 1,5 кВт.

Способность бетонных смесей переходить во временно текучее состояние под действием вибрации зависит от подвижности смеси и скорости перемещения при этом частиц ее относительно друг друга.Подвижные смеси легко переходят в текучее состояние и требуют небольшой скорости перемещения. Но с увеличением жесткости (уменьшением подвижности) бетонная смесь все более утрачивает это свойство или требует соответствующего увеличения скорости колебаний, т. е. необходимы более высокие затраты энергии на уплотнение.

Скорость v (см/с) колебаний при вибрировании выражают произведением амплитуды А на частоту п колебаний: v=An-При постоянной частоте колебаний вибромеханизма (для большинства виброплощадок равной 3000 кол/мин) изменение скорости  колебаний может быть достигнуто изменением  величины мплитуды. Практика показала, что подвижные бетонные смеси Афективно уплотняются при амплитуде колебаний 0,3...0,35 мм, „жесткие — 0,5...0,7 мм.

На качество виброуплотнения оказывают влияние не только параметры работы вибромеханизма (частота и амплитуда), но также продолжительность вибрирования. Для каждой бетонной смеси в зависимости от ее подвижности существует своя оптимальная продолжительность виброуплотнения, до которой смесь уплотняется эффективно, а сверх которой затраты энергии возрастают в значительно большей степени, чем происходит уплотнение смеси. Дальнейшее уплотнение вообще не дает прироста плотности. Более того, чрезмерно продолжительное вибрирование может привести к расслаиванию смеси, разделению ее на отдельные компоненты — цементный раствор и крупные зерна заполнителя, что в конечном счете приведет к неравномерной плотности изделия по сечению и снижению прочности в отдельных частях его. Естественно, что продолжительное вибрирование невыгодно и в экономическом отношении: возрастают затраты электроэнергии и   трудоемкость,   снижается   производительность   формовочной линии.

Интенсивность И (см2/с3) виброуплотнения, выраженная наименьшей продолжительностью вибрирования, зависит также от основных параметров работы вибромеханизма — частоты и амплитуды колебаний, применяемых с учетом их взаимного сочетания скорости и ускорения колебаний: И = А2/п3.

Интенсивность виброуплотнения также возрастает, если частота вынужденных колебаний оказывается равной частоте собственных колебаний. В связи с тем что бетонная смесь имеет большой диапазон размеров частиц (от нескольких микрометров для цемента до нескольких сантиметров для крупного заполнителя) и соответственно различия в частоте их собственных колебаний, наиболее интенсивное уплотнение смеси будет в том случае, когда . режим вибрирования характеризуется различными частотами. Так возникло предложение применять поличастотное вибрирование.

Эти факторы следует учитывать для технико-экономической оценки операций формования изделий. Из сказанного следует, что эффективность уплотнения возрастает с увеличением энергии уплотнения, продолжительность уплотнения при этом снижается и производительность формовочной линии повышается. Таким образом, на основании технико-экономического анализа свойств бетонной смеси, производительности формовочной линии можно выбрать мощность виброуплотняющих механизмов.

Виброуплотнение бетонной смеси производят переносными и стационарными вибромеханизмами. Применение переносных виб-Ромеханизмов в технологии сборного железобетона ограничено. Их используют в основном при формовании крупноразмерных массивных изделий на стендах.

В технологии сборного железобетона на заводах, работающих по поточно-агрегатной и конвейерной схемам, применяют виброплощадки. Виброплощадки отличаются большим разнообразием типов и конструкций вибраторов — электромеханические, электр0 магнитные, пневматические; характером колебаний — гармонические, ударные, комбинированные; формой колебаний — круговые направленные — вертикальные, горизонтальные; конструктивными схемами стола — со сплошной верхней рамой, образующей стол с одним или двумя вибрационными валами, и собранные из отдельных виброблоков, в целом представляющих общую вибрационную плоскость, на которой располагается форма с бетонной смесью.

Для прочности крепления формы к столу площадки предусматриваются специальные механизмы — электромагниты пневматические или механические прижимы.

Виброплощадка ( 11.1) представляет собой плоский стол, опирающийся через пружинные опоры на неподвижные опоры или раму (станину). Пружины предназначены гасить колебания стола и предупреждать этим их воздействие на опоры, иначе произойдет их разрушение. В нижней части к столу жестко прикреплен вибровал с расположенными на нем эксцентриками. При вращении вала от электромотора эксцентрики возбуждают колебания стола, передающиеся затем форме с бетонной смесью, в результате происходит ее уплотнение. Мощность виброплощадки оценивается ее грузоподъемностью (масса изделия вместе с формой), которая составляет 2...30 т.

Заводы сборного железобетона оборудованы унифицированными виброплощадками, с частотой вращения 3000 кол/мии и амплитудой 0,3...0,6 мм. Эти виброплощадки хорошо уплотняют жесткие бетонные смеси конструкций длиной до 18 м и шириной до 3,6 м.

При формовании изделий на виброплощадках, особенно из жестких бетонных смесей на пористых заполнителях, в целях улучшения структуры бетона используют пригрузы — статический, вибрационный, пневматический, вибропневматический. Величина пригруза в зависимости от свойств бетонной смеси составляет 2...5 кПа.

При    формовании    изделии в неподвижных формах уплот- ; нение   бетонной   смеси   произ-водят с   помощью  поверхностных,   глубинных    и    навесных вибраторов,  которые  крепят к ■, форме. При изготовлении изде-  i лий в горизонтальных формах  | применяют жесткие или  мало-  : подвижные  бетонные  смеси,  а   | при  формовании  в  вертикальь1Х формах (в кассетах) применяют подвижные смеси с осадкой конуса 8... 10 см.

 Прессование — редко применяемый способ уплотнения бетонки смеси в технологии сборного железобетона, хотя по техническим показателям отличается большой эффективностью, позволяя получать бетон высокой плотности и прочности при минимальном расходе цемента (100...150 кг/м3 бетона). Распространению способа прессования препятствуют исключительно экономические причины. Прессующее давление, при котором бетон начинает эффективно уплотняться, — Ю...15МПа и выше. Таким образом, для уплотнения изделия на каждый 1 м2 его следует приложить нагрузку, равную 10... 15 МН. Прессы такой мощности в технике применяют, например, для прессования корпусов судов, но стоимость их оказывается столь высокой, что полностью исключает экономическую целесообразность использования таких  прессов.

В технологии сборного железобетона прессование используют как дополнительное приложение к бетонной смеси механической нагрузки при ее вибрировании. В этом случае потребная величина прессующего давления не выходит за пределы 500... 1000 Па. Технически такого давления достигают под действием статически приложенной нагрузки в результате принудительного перемещения отдельных частиц бетонной смеси.

Различают прессование штампами плоскими и профильными. Последние передают свой профиль бетонной смеси. Так формуют лестничные марши, некоторые виды ребристых панелей. В последнем случае способ прессования называют еще штампованием. Прокат является разновидностью прессования. В этом случае прессующее давление передается бетонной смеси только через небольшую площадь катка, что соответственно сокращает потребность в давлении прессования. Но здесь особую значимость приобретают пластические свойства бетонной смеси, связность ее массы. При недостаточной связности будет происходить сдвиг смеси прессующим валком и разрыв ее. • Центрифугирование — уплотнение бетонной смеси в результате действия центробежных сил, возникающих в ней при вращении. Для этой цели применяют центрифуги ( 11.2), представляющие собой форму трубчатого сечения, которой в процессе уплотнения сообщается вращение до 600... 1000 мин

Способ   центрифугирования   сравнительно   легко   позволяет

получать   изделия   из   бетона   высокой    плотности,    прочности

(40...60 МПа)  и долговечности. При этом для получения бетон

ной   смеси   высокой   связности   требуется   большое   количество

цемента   (400...450 кг/м3),   иначе  произойдет  расслоение  смеси

под действием центробежных сил  на  мелкие и крупные зерна

так как последние с большой силой будут стремиться прижаться

к   поверхности  формы.   Способом   центрифугирования  формуют

трубы,  опоры  линий  электропередач,   стойки   под   светильники.

   При вакуумировании в бетонной смеси создается разрежение

до 0,07...0,08 МПа и воздух, вовлеченный при ее приготовлении и

укладке в форму, а также немного воды удаляется из бетонной

смеси под действием этого разрежения: освободившиеся при этом

места занимают твердые  частицы  и  бетонная  смесь  приобре

тает   повышенную   плотность.    Кроме   того,    наличие   вакуума

вызывает  прессующее действие  на  бетонную  смесь   атмосфер

ного давления,  равного  величине вакуума.  Это также  способ

ствует уплотнению бетонной смеси. Вакуумирование сочетается,

как правило, с вибрированием. В процессе вибрирования бетон

ной смеси, подвергнутой вакуумированию, происходит интенсив

ное  заполнение  твердыми   компонентами   пор,   образовавшихся

при вакуумировании на месте воздушных пузырьков и воды. Од

нако вакуумирование  в техническом  отношении  имеет  важный

технико-экономический  недостаток, а именно:  большую продол

жительность   процесса   —   1...2мин   на   каждый   1см   толщины

изделия в зависимости от свойств бетонной  смеси  и величины

сечения.   Толщина  слоя,  которая  может  быть  подвергнута  ва

куумированию,  не  превышает   12... 15  см.  Вследствие этого ва

куумированию   подвергают   преимущественно   массивные   кон

струкции для придания поверхностному слою их особо высокой

плотности. В технологии сборного железобетона вакуумирование

практически не находит применения.      

 

К содержанию книги: "Строительные материалы и изделия"

 

Смотрите также:

 

 Минеральные вяжущие вещества   Бетон и строительные растворы   Добавки в бетон  Гидроизоляция  Каркасные работы  Внутренние перегородки  Лаки и краски  Строительство дома

 

Строительные материалы 

 

ОСНОВНЫЕ СВОЙСТВА СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ

Связь состава, структуры и свойств

Стандартизация свойств. Марки материалов

Физические свойства

Механические свойства стройматериалов

Химические и технологические свойства стройматериалов. Химические и физико-химические свойства

Технологические свойства стройматериалов

Методика преподавания свойств строительных материалов

  

ПРИРОДНЫЕ КАМЕННЫЕ МАТЕРИАЛЫ

Магматические породы

Химический и минеральный составы магматических пород

Важнейшие виды магматических пород и их строительные свойства

Осадочные горные породы. Классификация осадочных горных пород

Химический и минеральный составы осадочных пород

Важнейшие виды осадочных пород и их строительные свойства

Важнейшие метаморфические породы

Виды материалов и изделий. Технические требования к ним

Добыча и обработка каменных материалов. Технология каменных материалов и изделий включает добычу горной породы и ее обработку

Меры защиты каменных материалов от выветривания в сооружениях

Методика преподавания природных каменных материалов

 

КЕРАМИЧЕСКИЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ

Сырье для производства керамических материалов и изделий

Непластичные материалы

Глазури и ангобы

Общая схема производства керамических изделий

Стеновые материалы

Кирпич керамический обыкновенный

Эффективные стеновые керамические изделия

Монтаж дома из керамических панелей

Облицовочные материалы и изделия

Керамические изделия для внутренней облицовки

Керамические материалы и изделия различного назначения

Керамические трубы

Санитарно-техническая керамика

Теплоизоляционные керамические изделия

Кислотоупорные керамические изделия

Огнеупорные материалы

Методика преподавания керамических материалов и изделий

 

МАТЕРИАЛЫ И ИЗДЕЛИЯ ИЗ СИЛИКАТНЫХ РАСПЛАВОВ

Стекло и изделия из стекла

Сырье

Производство стекла

Свойства

Разновидности стекла и стеклянных изделий в строительстве

Ситаллы и шлакоситаллы

Литые каменные изделия

Методика преподавания стекла и других плавленых материалов и изделий

  

НЕОРГАНИЧЕСКИЕ ВЯЖУЩИЕ ВЕЩЕСТВА

Сырьевые материалы и основы технологии неорганических вяжущих веществ

Производство неорганических вяжущих веществ

Воздушные вяжущие вещества

Свойства гипсовых вяжущих

Применение гипсовых вяжущих

Магнезиальные вяжущие вещества

Растворимое стекло и кислотоупорный цемент

Известь строительная воздушная

Твердение и свойства

Применение извести

Гидравлические вяжущие вещества

Портландцемент

Состав портландцемента

Твердение портландцемента

Структура портландцемента

Свойства портландцемента

Стойкость затвердевшего цемента

Применение портландцемента

Разновидности портландцемента

Портландцементы с активными минеральными добавками

Твердение

Свойства портландцементов

Другие вяжущие с активными минеральными добавками

Гипсоцементно-пуццолановые вяжущие. Глиноземистый цемент

Сырье и производство

Состав и особенности твердения глиноземистого цемента

Свойства и применение глиноземистого цемента

Расширяющиеся и безусадочные цементы

Методика преподавания неорганических вяжущих веществ

  

СТРОИТЕЛЬНЫЕ РАСТВОРЫ

Основные свойства строительных растворов

Применение растворов различных видов

Методика преподавания бетонов и строительных растворов

 

ИСКУССТВЕННЫЕ КАМЕННЫЕ БЕЗОБЖИГОВЫЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ

Силикатные материалы и изделия

Сырье

Производство силикатных изделий

Тяжелый силикатный бетон

Легкие силикатные бетоны

Ячеистые силикатные бетоны

Гипсовые и гипсобетонные изделия

Свойства изделий на основе гипса

Производство изделий из гипсовых и гипсобетонных смесей

Асбестоцементные материалы и изделия

Сырье

Производство асбестоцементных изделий

Виды асбестоцементных изделий

 

МЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ

Основы технологии черных металлов

Производство стали

Строение металлов

Кривые охлаждения и нагревания железа

Структура

Механические испытания металлов

Основы термической обработки стали

Виды термической обработки стали

Химико-термическая обработка стали

Наклеп, возврат и старение стали

Применение металлов в строительстве. Сталь углеродистая обыкновенного качества

Сталь легированная

Применение стали в строительстве

Чугуны

Цветные металлы и сплавы

Коррозия металлов и способы защиты от нее

Сварка металлов

 

МАТЕРИАЛЫ И ИЗДЕЛИЯ ИЗ ДРЕВЕСИНЫ

Строение и состав древесины

Механические свойства древесины

Пороки древесины

Сушка древесины

Защита древесины от гниения, поражения насекомыми и возгорания

Основные породы древесины, применяемые в строительстве

Материалы и изделия из древесины

Строительные детали и изделия из древесины

Методика преподавания материалов и изделий из древесины

  

ТЕПЛОИЗОЛЯЦИОННЫЕ И АКУСТИЧЕСКИЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ

Строение и свойства теплоизоляционных материалов

Неорганические теплоизоляционные материалы и изделия

Теплоизоляционные материалы из вспученных горных пород и изделия на их основе

Органические теплоизоляционные материалы и изделия

Акустические материалы и изделия

Звукопоглощающие материалы и изделия

Звукоизоляционные материалы и изделия

Методика преподавания теплоизоляционных и акустических материалов и изделий

 

БИТУМНЫЕ И ДЕГТЕВЫЕ ВЯЖУЩИЕ И МАТЕРИАЛЫ НА ИХ ОСНОВЕ

Битумы

Состав и структура битумов

Свойства битумов

Дегти

Состав, свойства и применение дегтя

Смешанные вяжущие на основе битумов и дегтей, эмульсии и пасты

Материалы на основе битумов и дегтей

Сырье

Структура и состав асфальтового бетона

Производство асфальтового бетона

Свойства асфальтового бетона

Применение асфальтового бетона

Кровельные, гидроизоляционные и герметизирующие материалы

Покровные материалы

Рулонные покровные материалы

Беспокровные рулонные материалы на основе

Обмазочные материалы (мастики, эмульсии и пасты)

Герметизирующие материалы (герметики) на основе битумов

Методика преподавания вяжущих и материалов на основе битумов и дегтей

  

МАТЕРИАЛЫ И ИЗДЕЛИЯ ИЗ ПЛАСТМАСС

Основные компоненты пластмасс

Наполнители

Пластификаторы. Стабилизаторы, отвердители, инициаторы

Основные свойства строительных пластмасс. Прочность пластмасс

Виды строительных материалов и изделий из пластмасс

Конструкционно-отделочные и отделочные материалы

Материалы для полов

Теплоизоляционные материалы

Гидроизоляционные материалы и герметики

Трубы и санитарно-технические изделия

Применение полимеров в технологии бетонов

Клеи на основе полимеров

Методика преподавания материалов и изделий из пластмасс

  

ЛАКОКРАСОЧНЫЕ МАТЕРИАЛЫ

Пигменты и наполнители

Природные неорганические пигменты

Искусственные неорганические пигменты

Металлические и органические пигменты

Связующие вещества, растворители и разбавители

Растворители и разбавители

Красочные составы

Лаки

Водоразбавляемые краски на основе неорганических вяжущих веществ и клеев