Портландцемент. Технология портландцемента. Сухой способ производства цемента

  

Вся электронная библиотека >>>

Содержание книги >>>

 

Быт. Хозяйство. Строительство. Техника

Строительные материалы


Книги по строительству и ремонту

 

НЕОРГАНИЧЕСКИЕ ВЯЖУЩИЕ ВЕЩЕСТВА

Портландцемент

 

 

Портландцемент и его разновидности являются основным вяжущим материалом в современном строительстве. В СССР его производство составляет около 65 % от выпуска всех цементов.

 Портландцемент — продукт тонкого измельчения клинкера, получаемого обжигом до спекания, т. е. частичного плавления сырьевой смеси, обеспечивающей преобладание в нем высокоосновных силикатов кальция (70...80 %). Для регулирования схватывания и некоторых других свойств при помоле клинкера в цемент добавляют небольшое количество гипса (1,5...3,5 %). В соответствии с ГОСТ 10178—85 за таким бездобавочным цементом сохранено название портландцемент (ПЦ-ДО). Ш Сырье и производство.

Для получения доброкачественного портландцемента химический состав клинкера, а следовательно, и состав сырьевой смеси должны быть устойчивы.

Многочисленные исследования и практический опыт показывают, что элементарный химический состав клинкера должен находиться в следующих пределах (% по массе): СаО — 63...66; SiO2 — 21...24; А12О3 — 4...8; Ре2Оз — 2...4, их суммарное количество составляет 95... ...97 %. Следовательно, для производства портландцемента следует применять такие сырьевые материалы, которые содержат много карбоната кальция и алюмосиликатов (известняки, глины, известковые мергели). Чаще используют искусственные сырьевые смеси из известняка или мела и глинистых пород при соотношении между ними в сырьевой шихте примерно 3:1 (% по массе): СаСО3 — 75...78 и глинистого вещества — 22...25. Вместо глины или для частичной ее замены используют также отходы различных производств  (доменные шлаки, нефелиновый     шлам      и т.      п.).       Нефелиновый шлам, получающийся при производстве    глинозема, уже   содержит   25...30 % SiOЈ и 50...55 % СаО; достаточно к нему добавить 15...20 %  известняка, чтобы    получить    сырьевую смесь. При этом производительность   печей   повысится  примерно на 20 %, а расход топлива снизится на 20...25 %. Для обеспечения нужного химического    состава    сырьевой смеси применяют корректирующие добавки, содержащие  недостающие  оксиды.  Например,  количество S1O2 повышают, добавляя в сырьевую смесь трепел, опоку. Добавление колчеданных огарков увеличивает         содержание Fe2O3.

 



 

В качестве топлива используют природный газ, реже мазут и твердое топливо в виде угольной пыли. Стоимость топлива составляет до 26 % себестоимости готового цемента, поэтому на цементных заводах много внимания уделяется его экономии.

Технология портландцемента в основном сводится к приготовлению сырьевой смеси надлежащего состава, ее обжигу до спекания (получают клинкер) и помолу в тонкий порошок.

Сырьевую смесь приготовляют сухим или мокрым способом (см. 5.2). В соответствии с этим различают и способы производства цемента — сухой и мокрый. В СССР преобладает мокрый способ производства цемента, но все шире внедряется сухой. Важнейшим преимуществом сухого способа производства является не только снижение расхода теплоты на обжиг в 1,5...2 раза, чем при мокром, но и более высокие удельные съемы в печах сухого способа.

Обжиг сырьевой смеси чаще осуществляют во вращающихся печах, но иногда (при сухом способе) в шахтных.

Вращающаяся печь (5.2) представляет собой сварной стальной барабан длиной до 185 м и более, диаметром до 5...7 м, футерованный изнутри огнеупорными материалами. Барабан уложен на роликах под углом 3...4° к горизонту и медленно вращается вокруг своей оси. Благодаря этому сырьевая смесь, загруженная в верхнюю часть печи, постепенно перемещается к нижнему концу, куда вдувают топливо, продукты горения которого просасываются навстречу сырьевой смеси и обжигают ее. Характер процессов, протекающих при обжиге сырьевой смеси, приготовленной по сухому и мокрому способам, по существу, одинаков и определяется температурой и временем нагревания материала в печи. Рассмотрим эти процессы.

В зоне сушки поступающая в верхний конец печи сырьевая смесь встречается с горячими газами и постепенно при повышении температуры с 70 до 200 °С (зона сушки) подсушивается, превращаясь в комья, которые при перекатывании распадаются на более мелкие гранулы. По мере перемещения сырьевой смеси вдоль печи происходит дальнейшее постепенное ее нагревание, сопровождаемое химическими реакциями.

 В зоне подогрева при 200...700 °С сгорают находящиеся в сырье органические примеси, удаляется химически связанная вода из глинистых минералов и образуется безводный каолинит Al2O3-2SiO2. Подготовительные зоны (сушки и подогрева) при мокром способе производства занимают 50...60 % длины печи, при сухом же способе подготовки сырья длина печи сокращается за счет зоны сушки.

 В зоне декарбонизации при температуре 700... s..l 100 °С происходит процесс диссоциации карбонатов кальция и магния на CaO, MgO и СО2, алюмосиликаты глины распадаются на отдельные оксиды SiO2, A12O3 и Fe2O3 с сильно разрыхленной структурой. Термическая диссоциация СаСО3 — это эндотермический процесс, идущий с большим поглощением теплоты (1780 кДж на 1 кг СаСО3), поэтому потребление теплоты в третьей зоне печи наибольшее. В этой же зоне оксид кальция в твердом состоянии вступает в реакцию с продуктами распада глины с образованием низкоосновных силикатов, алюминатов и ферритов кальция (2CaO-SiO2, СаО-АШ3, 2CaO-Fe2O3).

 В зоне экзотермических реакций обжигаемая масса, передвигаясь, быстро нагревается от 1100 до 1300°С, при этом образуются более основные соединения: трех-кальциевый алюминат ЗСаО-А12О3(С3А), четырехкальциевый алюмоферрит 4CaO-Al2O3-Fe2O3(C4AF), но часть оксида кальция еще остается в свободном виде. Обжигаемый материал агрегируется в гранулы.

В зоне спекания при 1300...1450 °С обжигаемая смесь частично расплавляется. В расплав переходят С3А, C4AF, MgO и все легкоплавкие примеси сырьевой смеси. По мере появления расплава в нем растворяются C2S и СаО и, вступая во взаимодействие друг с другом, образуют основной минерал клинкера — трехкальциевый силикат 3CaO-SiO2(C3S), который плохо растворяется в расплаве и вследствие этого выделяется из расплава в виде мелких кристаллов, а обжигаемый материал спекается в кусочки размером 4...25 мм, называемые клинкером.

 В зоне охлаждения (заключительная стадия обжига) температура клинкера понижается с 1300 до 1000 °С, происходит окончательная фиксация его структуры и состава, включающего C3S, C2S, C3A, C4AF, стекловидную фазу и второстепенные составляющие.

По выходе из печи клинкер необходимо быстро охладить в специальных холодильниках, чтобы предотвратить образование в нем крупных кристаллов и сохранить в не-закристаллизованном виде стекловидную фазу. Без быстрого охлаждения клинкера получится цемент с пониженной реакционной способностью по отношению к воде.

После выдержки на складе (1...2 недели) клинкер превращают в цемент путем помола его в тонкий порошок, добавляя небольшое количество двуводного гипса. Готовый портландцемент направляют для хранения в силосы и далее на строительные объекты.

Сухой способ производства цемента значительно усовершенствован. Наиболее энергоемкий процесс — декарбонизация сырья — вынесен из вращающейся печи в специальное устройство — декарбонизатор, в котором он протекает быстрее и с использованием теплоты отходящих газов (5.3). По этой технологии сырьевая мука сначала поступает не в печь, а в систему циклонных теплообменников, где нагревается отходящими газами и уже горячей подается в декарбонизатор. В декарбонизаторе сжигают примерно 50 %  топлива, что позволяет почти полностью завершить разложение СаСО3. Подготовленная таким образом сырьевая мука подается в печь, где сжигается остальная часть топлива и происходит образование клинкера. Это позволяет повысить производительность технологических линий, снизить топливно-энергетические ресурсы, примерно вдвое сократить длину вращающейся печи, соответственно улучшить компоновку завода и занимаемой им земельной территории.

В СССР создана низкотемпературная солевая технология производства цемента, базирующаяся на открытии советских ученых. Сущность открытия заключается в установлении нового явления — образования высокоосновного силиката кальция — алинита, близкого по составу к алиту в области температур 9ОО...11ОО°С, т. е. значительно ниже температур кристаллизации трехкальциевых силикатов — алитов. Алинит, являющийся основной вяжущей фазой портландцементных клинкеров нового типа, обусловливает их высокую гидравлическую активность. Вхождение анионов хлора в структуру является обязательным условием образования алинита и клинкеров нового типа. Введение в шихту, например, 10... 12 % СаС12 сопровождается образованием хлоркальциевого расплава при чрезвычайно низких температурах (600...800 С), что смещает все основные реакции образования минералов в область температур 1000... 1100 "С и позволяет получать клинкер при пониженных температурах.

Внедрение новой технологии позволит сократить удельные расходы топлива, резко повысить производительность печей и помольного оборудования.

 

Содержание книги: «Стройматериалы»

 

Смотрите также:

 

 Строительные материалы

 

Вяжущие вещества — основа современного строительства

Краткие сведения о развитии производства минеральных вяжущих веществ

Классификация и номенклатура вяжущих веществ, исходные материалы для их производства, добавки

Добавки

 

ЧАСТЬ 1. ВЯЖУЩИЕ ВЕЩЕСТВА ВОЗДУШНОГО ТВЕРДЕНИЯ

ГИПСОВЫЕ И АНГИДРИТОВЫЕ, ВЯЖУЩИЕ ВЕЩЕСТВА И СЫРЬЕ ДЛЯ ИХ ПРОИЗВОДСТВА

Модификации водного и безводного сульфата кальция

Технология гипсовых вяжущих а- и Р-модификаций полугидрата сульфата кальция из природного сырья

Обжиг гипса в варочных котлах

Гипсоварочный котел

Гипсовое вяжущее

Получение высокопрочного гипса варкой в окидких средах

Охрана труда и автоматизация производства на гипсовых заводах

Схватывание и твердение полуводного гипса

Свойства гипсовых вяжущих и области их применения

Ангидритовые вяжущие

Ангидритовый цемент

Высокообжиговое ангидритовое вяжущее (эстрих-гипс)

Гипсовые и ангидритовые вяжущие из побочных материалов химической промышленности

 

ГЛАВА 2. ИЗВЕСТЬ СТРОИТЕЛЬНАЯ ВОЗДУШНОГО ТВЕРДЕНИЯ

Исходные материалы

Негашеная известь (комовая)

Известково-обжигательные печи

Гидратная известь (пушонка) и известковое тесто

Гидраторы

Известковое тесто

Молотая негашеная известь

Охрана труда на известковых заводах

Твердение воздушной извести

Свойства воздушной извести и области ее применения

  

ГЛАВА 3. МАГНЕЗИАЛЬНЫЕ ВЯЖУЩИЕ ВЕЩЕСТВА. Каустический магнезит

Затворители для каустического магнезита

Магнезиальный цемент

Каустический доломит

 

ЧАСТЬ 2. ГИДРАВЛИЧЕСКИЕ ВЯЖУЩИЕ ВЕЩЕСТВА

 

ГЛАВА 4. ГИДРАВЛИЧЕСКАЯ ИЗВЕСТЬ И РОМАНЦЕМЕНТ. Гидравлическая известь

Свойства гидравлической извести

Романцемент

Свойства романцемента

 

ГЛАВА 5. ПОРТЛАНДЦЕМЕНТ

Клинкер, его химический и минеральный состав

Алит

Белит

Алюмоферритная и алюминатная фаза промежуточного вещества в клинкере

Характеристика клинкера

Классификация клинкеров и номенклатура портландцементов

 

ГЛАВА 6. ТЕХНОЛОГИЯ ПОРТЛАНДЦЕМЕНТА. Сырьевые материалы и топливо

Мергели. Глины. Корректирующие добавки

Обжиг

Производство портландцемента

Мокрый способ производства клинкера

Корректирование состава шлама

Обжиг сырьевой смеси

Способы повышения эффективности изготовления клинкера мокрым способом

Сухой способ производства клинкера

Подготовка сырья и его обжиг во вращающихся печах с теплообменниками, декарбонизаторами и кальцинаторами

Обжиг в шахтных печах

Помол клинкера

Помольные установки и процессы измельчения

Хранение, упаковка и отправка цемента

Контроль производства цемента

Охрана труда на цементных заводах

Повышение эффективности производства и качества продукции

 

ГЛАВА 7. ТВЕРДЕНИЕ ПОРТЛАНДЦЕМЕНТА И ЕГО СВОЙСТВА

Теория твердения портландцемента при его взаимодействии с водой

 

ГЛАВА 8. СТРУКТУРА И СВОЙСТВА ЦЕМЕНТНОГО ТЕСТА И ЗАТВЕРДЕВШЕГО ЦЕМЕНТНОГО КАМНЯ

Седиментационные явления в тесте

Тепловыделение при взаимодействии цемента с водой

Набухание цементного теста

Изменения в содержании твердой фазы цементного теста и камня при твердении. Контракция и пористость

Структура цементного теста и камня

Формы связи воды в цементном тесте и камне

Щелочность жидкой фазы цементного камня и ее значение для защиты стали от коррозии

 

ГЛАВА 9. ФИЗИЧЕСКИЕ И МЕХАНИЧЕСКИЕ СВОЙСТВА ЦЕМЕНТОВ

Водопотребность и нормальная густота теста

Схватывание теста

Равномерность изменения объема

Активность и прочность портландцементов

Зависимость прочности цементов от их минерального состава, продолжительности твердения и дисперсности

Влияние температуры и добавок на скорость твердения портландцементов

Усадка и набухание цементного камня при изменении его влажности

Стойкость цементного камня при переменном увлажнении и высушивании

Трещиностойкость

Ползучесть цементного камня

 

ГЛАВА 10. СТОЙКОСТЬ ЦЕМЕНТОВ И БЕТОНОВ ПРОТИВ ДЕЙСТВИЯ ХИМИЧЕСКИХ И ФИЗИЧЕСКИХ АГРЕССИВНЫХ ФАКТОРОВ. Химическая коррозия цементного камня

Агрессивное действие на цемент некоторых органических веществ и защита бетона

Физическая коррозия цементного камня

Морозостойкость

Жаростойкость и огнеупорность цементов

 

ГЛАВА 11. РАЗНОВИДНОСТИ ПОРТЛАНДЦЕМЕНТОВ

Быстротвердеющие портландцементы

Портландцементы с пластифицирующими и гидрофобизирующими добавками

Сульфатостойкие портландцементы

Белый и цветные портландцементы

Портландцементы для бетона дорожных и аэродромных покрытий

Портландцемент для производства асбестоцементных изделий

Портландцементы для строительных растворов и бетонов автоклавного твердения

 

ГЛАВА 12. АКТИВНЫЕ МИНЕРАЛЬНЫЕ ДОБАВКИ И ПУЦЦОЛАНОВЫЕ ЦЕМЕНТЫ. Активные минеральные добавки

Природные минеральные добавки

Искусственные кислые активные минеральные добавки

Пуццолановые цементы. Пуццолановый портландцемент

Свойства пуццоланового портландцемента

Равномерность изменения объема пуццоланового портландцемента

Усадка и набухание пуццоланового портландцемента

Прочность пуццоланового портландцемента

Воздухостойкость. Морозостойкость пуццоланового портландцемента

Известесодержащие вяжущие вещества

 

ГЛАВА 13. ШЛАКИ И ШЛАКОВЫЕ ЦЕМЕНТЫ

Доменные шлаки

Химический состав доменных шлаков

Минеральный состав и структура доменных шлаков

Гидравлические свойства доменных шлаков

Передельные шлаки черной металлургии

Электротермофосфорные гранулированные шлаки

Шлаковые цементы. Шлакопортландцемент

Области применения шлакопортландцемента

Сульфатно-шлаковый цемент

Известково-шлаковое вяжущее

Шлаковые вяжущие вещества для бетонов автоклавного твердения

Шлакощелочные вяжущие

Известково-белитовое (нефелиновое) вяжущее

 

ГЛАВА 14. ГЛИНОЗЕМИСТЫЙ ЦЕМЕНТ И ЕГО РАЗНОВИДНОСТИ. Состав глиноземистого цемента

Производство глиноземистого цемента

Твердение глиноземистого цемента

Свойства и области применение глиноземистого цемента

 

ГЛАВА 15. СМЕШАННЫЕ ВЯЖУЩИЕ ВЕЩЕСТВА СО СПЕЦИАЛЬНЫМИ СВОЙСТВАМИ

Гипсоцементно-пуццолановые вяжущие вещества - ГЦПВ

 

ГЛАВА 16. НЕОРГАНИЧЕСКИЕ ВЯЖУЩИЕ С ДОБАВКАМИ ПОЛИМЕРНЫХ ВЕЩЕСТВ

 

ГЛАВА 17. КИСЛОТОУПОРНЫЙ КВАРЦЕВЫЙ ЦЕМЕНТ И ЖИДКОЕ СТЕКЛО




Rambler's Top100