Вся электронная библиотека >>>

 Естествознание >>>

 

 

Концепции современного естествознания


Раздел: Учебники

 

Захоронение ядерных отходов

 

Жизнь современного общества немыслима без мощных источников энергии. Их немного – гидро-, тепловые и атомные электростанции. Использование энергии ветра, Солнца, приливов и т.п. пока не получило широкого распространения. Тепловые станции выбрасывают в воздух громадное количество пыли и газов. В них содержатся и радионуклиды, и сера, которая потом возвращается на землю в виде кислотных осадков. Гидроресурсы даже в нашей огромной стране ограничены, и к тому же строительство гидростанций в большинстве случаев приводит к нежелательному изменению ландшафта и климата. В ближайшее время одним из основных источников энергии будут атомные электростанции. Они отличаются многими достоинствами, в том числе и экологическими, а применение надежной защиты может сделать их достаточно безопасными. Но остается еще один важный вопрос: что делать с радиоактивными отходами? Все радиоактивные отходы АЭС, скопившиеся за все время их работы, хранятся в основном на территории станций. В целом действующая на АЭС схема обращения с отходами пока обеспечивает полную безопасность, не оказывает влияния на окружающую среду и соответствует требованиям МАГАТЭ. Однако хранилища уже переполняются, требуются их расширение и реконструкция. Кроме того, приходит пора демонтировать станции, отслужившие свой срок. Расчетное время эксплуатации отечественных реакторов – 30 лет. С 2000 г. реакторы будут останавливаться практически ежегодно. И пока не будет найден простой и дешевый способ захоронения радиоактивных отходов, говорить о серьезных перспективах атомной энергетики преждевременно.

В настоящее время радиоактивные отходы содержатся в специальных хранилищах, где размещаются стальные контейнеры, в которых отходы сплавлены вместе со стекло-минеральной матрицей. Захоронение их пока не производится, но проекты захоронения активно разрабатываются. Иногда обсуждается вопрос: а нужно ли вообще захоранивать отходы, может быть, следует так и хранить их далее – ведь не исключено, что какой-нибудь изотоп понадобится технологии будущего? Дело, однако, в том, что количество отходов постоянно растет, накапливается, так что и в будущем этот источник полезных элементов вряд ли иссякнет. При необходимости просто будет изменена технология переработки. Проблема в другом. Приповерхностные хранилища гарантируют безопасность только в течение примерно ста лет, а отходы станут малоактивны лишь через несколько миллионов лет.

Еще один вопрос. Можно ли использовать тепловую энергию, которую выделяют ядерные отходы, например для отопления? Можно, но нерационально. С одной стороны, тепловыделение отходов не так уж велико, намного меньше выделяемого в реакторе тепла. С другой стороны, использование отходов для отопления потребовало бы очень дорогого обеспечения радиационной безопасности. В тепловой энергетике ситуация аналогична: есть много способов полнее использовать тепло, уходящее в дымовую трубу, но с какого-то уровня это невыгодно. Поэтому от ядерных отходов надо избавляться.

Обсуждается известная идея переработать долгоживущие радиоактивные изотопы в ядра с меньшим временем жизни с помощью ядерных реакций, протекающих в самих реакторах, при эксплуатации их в особом режиме. Казалось бы, чего проще, и никакого дополнительного оборудования не нужно. К сожалению, различие скоростей наработки новых и переработки уже образовавшихся долгоживущих изотопов невелико, и, как показывают расчеты, положительный баланс наступит лишь примерно через 500 лет. До этого времени человечество «утонет» в горах радиоактивных отходов. Другими словами, сами себя реакторы излечить от радиоактивности вряд ли смогут.

Радиоактивные шлаки можно изолировать в специальных толстостенных могильниках. Беда только в том, что такие захоронения должны быть рассчитаны по крайней мере на сотню тысяч лет безопасного хранения. А как предугадать, что может случиться за такой огромный период? Как бы там ни было, хранилища отработанного ядерного топлива должны располагаться в таких местах, где заведомо исключаются землетрясения, смещения или разломы грунтовых пластов и т. п. Кроме того, поскольку радиоактивный распад сопровождается разогревом распадающегося вещества, спрятанные в могильнике шлаки нужно еще и охлаждать. При неправильном режиме хранения может произойти перегрев и даже взрыв горячих шлаков.

В некоторых странах хранилища особо опасных в шлаков долгоживущих изотопов располагаются под землей на глубине в несколько сотен метров, в окружении скальных пород. Контейнеры со шлаками снабжают толстыми антикоррозийными оболочками, многометровыми слоями глины, препятствующей просачиванию грунтовых вод. Одно из таких хранилищ строится в Швеции на полукилометровой глубине. Это сложное инженерное сооружение снабжается разнообразной контрольной аппаратурой. Специалисты уверены в надежности данного сверхглубокого радиоактивного могильника. Такую уверенность вселяет обнаруженное в Канаде на глубине 430 м природное рудное образование объемом свыше миллиона кубометров с огромным, содержанием урана – до 55% (обычные руды содержат проценты или даже доли процента этого элемента). Это уникальное образование, возникшее в результате осадочных процессов примерно 1,3 млн лет назад, окружено слоем глины толщиной в разных местах от 5 до 30 м, который действительно накрепко изолировал уран и продукты его распада. На поверхности над рудным образованием и в его окрестностях не обнаружено следов ни повышения радиоактивности, ни увеличения температуры. Однако как будет в других местах и при других условиях?

Кое-где радиоактивные шлаки остекловывают, превращая в прочные монолитные блоки. Хранилища снабжаются специальными системами контроля и отвода тепла. В подтверждение надежности данного способа можно опять сослаться на естественный феномен. В Экваториальной Африке, в Габоне, около 2 млн лет назад случилось так, что вода и урановая руда собрались в созданной самой природой каменной чаше внутри скальных пород и в такой пропорции, что получился естественный, «без всякого участия человека», атомный реактор, и там в течение некоторого времени, пока не выгорел скопившийся уран, шла цепная реакция деления. Образовывался плутоний и те же радиоактивные осколки, как и в наших искусственно созданных атомных котлах. Изотопный анализ воды, почвы и окружающих горных пород показал, что радиоактивность осталась замурованной и за 2 млн прошедших с тех пор лет ее диффузия была незначительной. Это позволяет надеяться, что остеклованные источники радиоактивности в ближайшую сотню тысяч лет тоже останутся наглухо изолированными.

Иногда шлаки замуровывают в глыбы особо прочного бетона, которые сбрасываются в океанские глубины, хотя это далеко не лучший подарок нашим потомкам. В последнее время всерьез обсуждается возможность забрасывать контейнеры с долгоживущими изотопами с помощью ракет на невидимую обратную сторону Луны. Вот только как обеспечить стопроцентную гарантию того, что все запуски будут успешными, ни одна из ракет-носителей не взорвется в земной атмосфере и не засыплет ее смертоносным пеплом? Риск очень велик. Да и вообще мы не знаем, для чего понадобится обратная сторона Луны нашим потомкам.

А радиоактивных шлаков на АЭС образуется немало. Например, в Швеции, энергетика которой на 50% атомная, к 2010г. накопится примерно 200 тыс. м3 требующих захоронения радиоактивных отходов, из них 15% из которых содержат долгоживущие изотопы – остатки концентрированного ядерного горючего, требующие особо надежного захоронения. Этот объем сопоставим с объемом концертного зала и только лишь для одной маленькой Швеции!

Многие специалисты приходят к выводу: наиболее рациональное место захоронения – недра Земли. Для гарантии радиационной глубина захоронения должна быть минимум полкилометра. Для большей безопасности лучше располагать отходы еще глубже, но, увы, стоимость горных работ растет быстрее, чем квадрат глубины. Относительно недавно была высказана идея захоронения высокоактивных ядерных отходов в глубоких скважинах, заполненных легкоплавкой, инертной, водонепроницаемой средой. Наиболее удачным заполнением скважин может оказаться природная сера. Герметичные капсулы с высокоактивными отходами погружаются до дна скважины, расплавляя серу собственным тепловыделением. Предлагаются и другие способы захоронения радиоактивных отходов.

 

 

СОДЕРЖАНИЕ:  Концепции современного естествознания

 

Смотрите также:

  

Естествознание. НОВЕЙШАЯ РЕВОЛЮЦИЯ В ЕСТЕСТВОЗНАНИИ

Этим естествознание наступившей новой исторической эпохи существенно отличалось от естествознания.

 

Общие условия развития естествознания

В своем труде «Материализм и эмпириокритицизм», опубликованном в 1909 г., Ленин ответил на кардинальные философские, вопросы, возникшие в ходе развития естествознания.

 

естествознание. НОВЕЙШАЯ РЕВОЛЮЦИЯ В ЕСТЕСТВОЗНАНИИ...

Общие условия развития естествознания. Борьба передовых и реакционных идей в естествознании.

 

СТАНОВЛЕНИЕ МЕДИЦИНЫ. Внедрение естествознания в медицину

естествознания в области медицины ... В тесной связи со всеми медицинскими предметами она не только принесла свет к постели больного и всяческие благодеяния...

 

...вокруг света (1831—1836) и его значение в истории естествознания

областях естествознания, что проф. Генсло, рекомендуя его в 1831 г. в качестве натуралиста на «Бигль», руководился далеко не одной лишь своей интуицией.

 

ВНУТРЕННЯЯ МЕДИЦИНА терапия. Клиническая медицина

Все это вело к серьезному отставанию клинической медицины того времени от развивающегося естествознания. ВНУТРЕННЯЯ МЕДИЦИНА (терапия).

 

...и науки Бэкон выступил как провозвестник опытного естествознания...

...с одной стороны, о качественно простых природах, а с другой, - о чём-то более близком будущим объяснительным моделям механистического естествознания.

 

Медицина В ЗАПАДНОЙ ЕВРОПЕ В ПЕРИОД ПОЗДНЕГО СРЕДНЕВЕКОВЬЯ...

В эпоху Возрождения основными чертами естествознания стали: утверждение опытного метода в науке, развитие математики и механики, метафизическое мышление...

 

Революция в естествознании, идущая на протяжении всего XX...

И таким образом в научном мире сложился странный парадокс: представители естествознания, изучающие заведомо более простые объекты, давно открыли сложность, многомерность...

 

НИКОЛАЙ КУЗАНСКИЙ. Биография и трактаты Николая Кузанского....

космологии Коперника и опытного естествознания. Николай Кузанский родился в селении Куза в Южной Германии в 1401 году Отец.

 

Последние добавления:

 

Валеология. Вайнер  Валеология   География мирового хозяйства  Языковедение   

Туристская деятельность   Сборник задач по банковскому делу     Логика и аргументация