|
Для прямого перехода графита в алмаз необходимы еще более экстремальные условия по сравнению с методикой, использующей металл-растворитель. Это связано с большой устойчивостью графита обусловленной очень прочными связями его атомов. Результаты первых эскспериментов по прямому превращению графит—алмаз, выполненных П. Де-Карлн и Дж. Джеймисоном из «Аллайд кемикл Корпорэйпш» [27], были опубликованы в 1961 г. Для создания давления использовалось взрывчатое вещество большой мощности, с помощью которого в течение примерно миллионной доли секунды (одной -' микросекунды) поддерживалась температура около 1200° С и давление порядка 300000 атм. В этих условиях в образце графита после опыта обнаруживалось некоторое количество алмаза, правда в виде очень мелких частичек. Полученные кристаллиты по размерам (100 А=10 нм, или одна стотысячная доля миллиметра) сопоставимы с «карбонадо», встречающимся в метеоритах, образование которых объясняется воздействием мощной ударной волны, возникающей при ударе метеорита о земную поверхность. В 1963 г. Фрэнсису Банди из «Дженерал электрик» удалось осуществить прямое превращение графита в алмаз при статическом Давлении, превышающем 130 000 атм [28]. Такие давления были получены на модифицированной установке «белт» с большей внешней поверхностью поршней и меньшим рабочим объемом. Для создания таких давлений потребовалось увеличение прочности силовых деталей Установки. Эксперименты включали искровой нагрев бруска графита До температур выше 2000° С. Ншревание осуществлялось импульсами электрического тока, а температура, необходимая для образования алмаза, сохранялась в течение нескольких миллисекунд (тысячных Долей секунды), т. е. существенно дольше, чем в экспериментах Де-Карли и Джеймисона.
Размеры новообразованных частиц были в 2—-5 раз больше по сравнению с получающимися при ударном сжатии. Обе серии экспериментов дали необходимые параметры для построения фазовой диаграммы углерода, графически показывающей области температур и давлений, при которых стабильны алмаз, графит и расплав.I Интересные эксперименты были проведены Банди и Дж. Каспером [29], которые использовали монокристаллы графита вместо ттоликрн-сталлического материала. Кристаллы алмаза в их первых опытах имели обычную кубическую кристаллическую структуру. Еще Де-Карли и Джеймисон обратили внимание на то, что превращение в алмаз происходит легче, когда частички графита в образцах имеют удлинение вдоль так называемой оси с, т. е. перпендикулярно гексагональным слоям. Когда Банди и Каспер поместили монокристаллы таким образом, что давление прикладывалось вдоль оси с, и измерили электросопротивление кристаллов под давлением, то оказалось, что сопротивление увеличивается, когда достигается давление в 140 000 атм. Это связывали с переходом графита в алмаз, хотя при снятии давления происходило обратное превращение в графит. Однако, когда эта процедура сопровождалась нагревом образца до 900 'С и выше, образовывались кристаллиты новой фазы высокого давления, имеющие гексагональную структуру, а не обычную — кубическую. Гексагональный углерод также изредка находили в природных образцах, особенно в метеоритах. Он получил название лонсдеплит в честь Кэтлин Лонсдеил из Лондонского университета за ее большие заслуги в области кристаллографии, в частности в изучении алмаза. В 1968 г. Г. Р. Коуэну. Б. В, Даннингтону и А. X. Хольцману нз компании «Дюпон де Немюр» был выдан патент на новый процесс, заключающийся в ударном сжатии металлических блоков, например железных отливок, содержащих небольшие включения графита [301, при давлениях, превышающих 1 млн. атм. Металл, у которого сжимаемость меньше, чем у графита, выполняет функции холодильника, очевь быстро охлаждающего включения. Это предотвращает обратный переход алмаза, образовавшегося под действием ударной волны, в графит после прохождения этой волны—тенденции, характерной для экспериментов с монокристаллами при холодном сжатии. Конечный продукт, получаемый при использовании этой технологии, частично представлен гексагональным углеродом, что также подтверждает тенденцию к образованию лонсдейлита в условиях очень высоких давлений и относительно низких температур. Изготовленный таким способом материал используется в качестве шлифовального порошка. Время от времени сообщается об исследованиях, направленных на модификацию того или иного из этих методов. Так, Л. Труеб [3J ] применил принцип Де-Карли — Джеймисона для создания давления в 250 000—450 000 атм в течение 10—30 мкс, сопровождаемого разогревом после удара до 1100°С. Использовался графит в виде частичек диаметром 0,5—5 мкм, и получаемые алмазы имели те же размеры. Однако установлено, что эти частички образованы очень мелкими (от Ю—40 до 100—1600 А) кубическими алмазами. В настоящее время нет сведений о том. что продукция «Аллайд кемикл корпорэйшн» поступает в коммерческую торговлю. Способ, разработанный этой компанией, чтобы он мог успешно конкурировать с методом, использующим растноритель, и методом компании «Дюпон де Немюр», нуждается в дальнейшем совершенствовании. Потенциальное преимущество методов ударного сжатия в том, что взрыв—дешевый путь создания высоких давлений. |
«Искусственные драгоценные камни» Следующая страница >>>
Смотрите также:
Исторические художественные стили. От Древней Руси до эпохи модерна
Стили и художественные направления 20 века. От ар деко до модернизма
Стилевые направления второй половины XX века
Художественные направления в современном ювелирном искусстве России. От классики до современного авангарда
Гарнитур украшений «Геометрический»
Гарнитур украшений «Княгиня Ольга»
Гарнитур украшений "Полярная звезда"
Брошь-подвеска трансформер «Сияние»
Броши «Король», «Королева», «Шут»
Гарнитур украшений «У Ойкумены края нет»
Гарнитур украшений «Кандинский»
Гарнитур украшений «Белый квадрат»
Золотые кольца с рубинами, сапфирами, демантоидами
Брошь «Зачарованный мир Австралии»
Подвески-трансформеры «Пьеро» и «Луна» из серии «Венецианский карнавал»
Гарнитур украшений "Галактика"
Словарь художников, архитекторов, мастеров декоративно-прикладного искусства и ювелирных фирм