Битуминозные породы. Круговорот химических элементов образующих углеводороды - водорода и углерода - на Земле и в Космосе

 

ТЕОРИИ ОБРАЗОВАНИЕ НЕФТИ И ГАЗА

 

 

Битуминозные породы. Круговорот химических элементов образующих углеводороды - водорода и углерода - на Земле и в Космосе

 

Исследования, связанные с дальнейшим углублением теории происхождения нефти и газа, могут оказать существенную помощь при поисках не только этих, но и других полезных ископаемых, генетически или морфологически связанных с первыми.

 

 Как отмечалось, в настоящее время нефть и газ не только являются источниками углеводородов, но и используются как сырье для получения содержащихся в них в виде примеси различных компонентов в промышленных количествах.

 

Так, при очистке сернистых нефтей извлекаются значительные количества серы, столь необходимой промышленности и сельскому хозяйству. При значительных содержаниях в нефти практический интерес могут представлять и различные редкие элементы, такие как ванадий и др.

 

 Вероятно, читателям известно о том, что сероводород из "вредной" примеси в природных газах превратился в весьма полезный компонент, извлечение которого приносит большую пользу народному хозяйству. Так, уже в настоящее время значительная часть потребности народного хозяйства нашей страны в сере покрывается за счет сероводорода, который извлекается с помощью нескольких заводов из газа Оренбургского месторождения и некоторых месторождений Средней Азии.

 

 Особый интерес в этом отношении представляет залежь Астраханского месторождения, освоение которого предусмотрено в "Основных направлениях экономического и социального развития СССР на 1981 ‑ 1985 годы и на период до 1990 года".

 

 Вторым неуглеводородным компонентом природных газов, который при определенных содержаниях может представлять промышленный интерес, является гелий. Попутное извлечение этого весьма ценного и важного для народного хозяйства сырья из газов, добываемых для других целей, может дать огромный экономический эффект.

 

 

 При определенных условиях могут представлять промышленный интерес и такие часто содержащиеся в природных газах в значительных количествах компоненты, как углекислый газ, азот и др. Промышленное применение углекислого газа весьма разнообразно ‑ от газированной воды до искусственного льда. Что касается азота, то его использование в промышленности все расширяется, но особенно он необходим при производстве удобрений.

 

 Совершенно очевидно, что достоверный прогноз о наличии в нефтях и газах перечисленных выше и других полезных компонентов возможен лишь в том случае, если будет определено, когда и как попадают они в нефть и природный газ, что неотделимо от определения механизма условий их образования. Поэтому дальнейшие теоретические разработки в области генезиса нефти и газа должны быть направлены на выявление реакций условий их развития, в результате которых в нефть и газ попадают различные неуглеводородные компоненты.

 

 Уже давно было замечено, что с битуминозными породами и углеводородными газами ассоциируют месторождения рудных полезных ископаемых: урана, ртути, свинца и др. Это связано с сорбционными свойствами битуминозных пород и со специфической геохимической обстановкой, создающейся в этих породах внутри и вокруг нефтяных и газовых месторождений, особенно во время их разрушения. Поэтому исследования необходимо направить на выявление геохимических и физико‑химических условий скоплений битумов и формирования разрушения нефтяных и газовых месторождений. В наш космический век, когда стремительно развиваются исследования планет и других космических тел, необходимы прогнозы о возможности наличия жидких и газообразных углеводородов в их газовых оболочках и на поверхности. Это нужно для комплектования аналитических приборов в посылаемых на указанные объекты аппаратах, для выбора материалов, из которых должны изготавливаться подобные аппараты и в дальнейшем для определения мер защиты космонавтов.

 

 Решение данной проблемы представляет также и научный интерес, поскольку оно должно объяснить наличие углеводородов в атмосфере некоторых планет, метеоритах и других космических телах и их связи с нефтью и залежами углеводородных газов на Земле. Для этого, очевидно, имеет смысл рассмотреть хотя бы в первом приближении круговорот в масштабе всей Вселенной химических элементов, образующих углеводороды.

 

Начнем с водорода. Как известно, это самый распространенный во Вселенной химический элемент, составляющий в виде плазмы более половины массы Солнца и большинства звезд, основную часть газов межзвездной среды и газовых туманностей, встречающийся в атмосферах ряда планет и в кометах как самостоятельно, так и в виде соединений с рядом элементов: углеродом, азотом, кислородом, кремнием, фосфором и др. Водород участвует также в корпускулярном излучении Солнца и космических излучениях, в виде протонов образует внутренний радиационный пояс Земли. В земной коре этот элемент составляет 1 % по весу и 16 % по числу атомов. Круговорот водорода в природе образуется из "кругов" разных масштабов в пределах: 1) поверхности Земли и земной коры, 2) земного шара и всей Солнечной системы и 3) всей Вселенной.

 

 Углерод по распространенности во Вселенной занимает четвертое место (по числу атомов). Число атомов этого элемента на три порядка меньше числа водородных атомов. Углерод составляет 0,04 % Земли в целом и 0,23 % земной коры. Среди всех химических элементов он выделяется исключительным разнообразием природных соединений, среди которых преобладают соединения органического происхождения. Число их видов исчисляется миллионами, они являются объектом исследований обширной самостоятельной ветви химических наук ‑ органической химии. Число видов неорганических соединений углерода исчисляется сотнями: известно до 200 неорганических минералов углерода, в ток числе самородные формы (графит и алмаз) и весьма распространенные карбонаты. Круговорот углерода состоит из "кругов" разного масштаба. Во многих "точках" различных "кругов" углерод и водород "соприкасаются" друг с другом, в связи с чем имеются потенциальные возможности синтеза углеводородов, в том числе и их радикалов, которые неустойчивы на Земле. О реализации этих возможностей свидетельствуют и данные о наличии углеводородов в метеоритах типа "углистых хондритов", в атмосферах больших планет ‑ Юпитера, Сатурна, Урана, Нептуна и их спутников, о наличии углеводородных радикалов в кометах, межзвездном газе, на Солнце и т. д.

 

 Безусловно, имеющаяся информация о распространении углеводородов во Вселенной далеко не отражает их истинного распространения, и среди известных 1020 звезд, более 100 миллионов которых имеют сходство с нашим Солнцем, весьма вероятно развитие процессов синтеза углерода с водородом. Однако, исходя из законов химической термодинамики, можно ожидать, что это должны быть ряды углеводородов, отражающие условия синтеза, например резкое преобладание одного метана и т. п., они не должны обладать оптической активностью, среди них не могут встречаться порфирины, они должны быть обогащены тяжелым изотопом углерода 13С. И действительно, эти особенности характерны для органического вещества многих метеоритов, для углеводородов в атмосферах планет внешней части Солнечной системы и их спутников, для метана, занесенного солнечным ветром в поверхностный грунт Луны.

 

 Таким образом, ни в космосе, ни на планетах и кометах нет типичных нефтей, которые известны в верхней части земной коры. Неизвестны также на указанных объектах и скопления углеводородных газов, аналогичные земным, содержащим большое число (более 150) других углеводородов. Однако не исключено, что, если а какой‑нибудь планете какой‑то звездной системы возникла жизнь, аналогичная земной, то в ее стратисфере могут быть залежи нефтей и углеводородных газов очевидно также, что теория осадочно‑миграционного происхождения нефти и углеводородных газов является лишь частью общей теории образования углеводородов во Вселенной, подобно тому, как Ньютонова механики представляет лишь часть общей теории относительности. Теория осадочно‑миграционного происхождения нефти и газа описывает образование этих ископаемых в специфических условиях ‑ из веществ, синтезированных растительными и животными организмами. Именно благодаря процессам жизнедеятельности нефть и природные углеводородные газы отличаются наличием исключительно разнообразных химических соединений. С другой стороны, процессы нефте‑ и частично газообразования из захороненного в осадках органического вещества развиваются лишь при поступлении тепловой энергии Земли. Стало быть, нефть и большинство природных углеводородных газов являются аккумуляторами не только солнечной энергии благодаря процессам фотосинтеза, но также и тепловой энергии Земли.

 

 Таким образом, в результате решения проблемы происхождения нефти и природных углеводородных газов возникли новые более широкие и глубокие проблемы. С одной стороны, необходимо все глубже и детальнее изучать сам процесс нефтегазообразования, чтобы выяснить, на какой его стадии, из какого органического вещества образуются все исходные для формирования залежей нефти и газа соединения и сколько их образуется? С другой стороны, необходимо расширять исследование теплового баланса Земли и обусловливающих его факторов, поскольку тепловой режим недр разных участков Земли является результатом сложного влияния тепловой энергии Солнца и глубинных зон Земли.

 

 Наконец, целесообразно углублять исследования "круговоротов" углерода и водорода и синтеза этих элементов в разных масштабах, захватывая сначала ближний космос и Солнечную систему, а затем постепенно расширяя исследования на дальний космос.

 

Общие циклы углерода и водорода во Вселенной

 

Общие циклы углерода и водорода во Вселенной

 

 

 

К содержанию: Образование нефти и горючих газов

 

Смотрите также:

 

ГЕОЛОГИЯ НЕФТИ И ГАЗА  Происхождение нефти угля природного газа  Теории аккумуляции нефти и газа

 

Нефтегазовая геология  Биогенная природа протонефти - исходного для нефти вещества.

 

Теории органического происхождения нефти и газа.  Первичная нефть – протонефть

 

Горючие керогеновые сланцы  Геологические условия миграции и аккумуляции нефти и газа