ПОЛИМЕРЦЕМЕНТНЫЕ МАТЕРИАЛЫ, полимерцементное отношение П/Ц

Вся электронная библиотека >>>

 Бетоны, растворы и мастики >>

  

 Строительство. Растворы и бетоны

Полимерные и полимерцементные бетоны, растворы и мастики


Раздел: Быт. Хозяйство. Строительство. Техника

 

ГЛАВА II. ПОЛИМЕРЦЕМЕНТНЫЕ МАТЕРИАЛЫ

 

 

ОБЩИЕ СВЕДЕНИЯ О ПОЛИМЕРЦЕМЕНТНЫХ МАТЕРИАЛАХ

 

Полимерцементные материалы — большая группа материалов, получаемых на основе двух вяжущих веществ: минерального и полимерного. В качестве минерального вяжущего могут быть использованы гипсовые, магнезиальные и гипсоцементно-пуцдолановые вяжущие, но наиболее часто — различные виды цемента. Полимерный компонент вводится непосредственно в тесто минерального вяжущего (бетонную смесь), и их твердение происходит совместно.

Обычно в полимерцементных материалах минерального вяжущего в несколько раз больше, чем полимерного связующего. Основной характеристикой состава полимерцементных материалов служит соотношение (по массе) полимерного компонента и минерального вяжущего — полимерцементное отношение (П/Ц).

Полимерцементные материалы можно рассматривать как композиционные строительные материалы, основу которых составляет матрица затвердевшего минерального вяжущего с распределенным в ней в той или иной форме затвердевшим полимером. В зависимости от типа наполнителя и заполнителя и степени наполнения различают полимерцементные мастики с тонкодисперсным наполнителем и полимерцементные растворы и бетоны с мелким и крупным заполнителем.

В качестве полимерного компонента в полимерцементных материалах используют термопластичные полимеры (поливинилацетат, акриловые полимеры и др.) и каучуки, олигомерные термореактивные смолы (эпоксидные, карбамидные) и мономерные продукты (например, фурфуролацетоновый мономер).

 

 

Олигомерные и мономерные продукты в процессе твердения материала переходят в полимерные продукты под действием отвердителей, инициаторов или в результате воздействия температуры, рН среды и т. п.

В зависимости от физического состояния вводимого полимерного вяжущего полимерцементные материалы могут быть четырех типов: I — на основе водных растворов мономеров, олигомеров или попимеров; II — на основе водных дисперсий полимеров или олигомеров; III — на основе вязкожидких водонерастворимых олигомеров; IV — на основе порошкообразных полимеров или олигомеров

Взаимное влияние минерального вяжущего и полимерного связующего приводит к образованию нового композиционного полимерце-ментного материала. У полимерцементных материалов обычно высокая адгезия к другим материалам (во много раз превышающая адгезию соответствующего минерального вяжущего), высокая износостойкость и стойкость к ударам. Полимерцементные материалы могут быть получены с высокой морозостойкостью, водонепроницаемостью, стабильно высокими диэлектрическими свойствами и многими другими специальными свойствами. Модуль упругости полимерцементных материалов снижается при увеличении содержания полимера.

Существенное влияние небольших количеств полимерного связующего на свойства материала объясняется структурными особенностями полимерцементных материалов, т. е. характером расположения полимера в матрице минерального вяжущего- Полимерное связующее образует упругие прослойки между кристаллическими новообразованиями минерального вяжущего, адсорбируется на поверхности частиц заполнителя и благодаря высоким адгезионным свойствам повышает прочность и деформативность материала при растяжении и изгибе. Часть полимера закрывает поры, снижая водопоглощение материала, повышая его морозостойкость и водонепроницаемость. Высокая адгезия полимерцементных смесей к другим материалам (например, попимерце-ментный раствор прекрасно сцепляется с поверхностью старого раствора) также объясняется присутствием в материале полимерного связующего, которое концентрируется на поверхности раздела „старый материал — полимерцементная смесь".

Как правило, прочностные свойства полимерцементных материалов мало отличаются от свойств материалов на чистых минеральных вяжущих. Обычно прочность при сжатии у полимерцементных материалов немного ниже, а прочность при растяжении и изгибе выше (в некоторых случаях в 1,5...2 раза), чем у аналогичных материалов на минеральном вяжущем. При применении высокопрочных термореактивных полимеров могут быть получены материалы с повышенными прочностными характеристиками.

Расход полимеров в полимерцементных материалах составляет 2...20% от массы минерального вяжущего (П/Ц = 0,02...0,2), но его стоимость значительно выше (в 10...100 раз), чем стоимость минеральных вяжущих. Поэтому стоимость полимерцементных растворов и бетонов значительно выше, чем обычных цементных. Так, например, латексцементный раствор на латексе СКС-65 с П/Ц = 0,12 дороже обычного раствора в 1,5...2 раза. Стоимость полимерцементных материалов на термореактивных водонерастворимых олигомерах еще выше: так, эпоксидно-цементные растворы с П/Ц = 0,10...0,15 дороже обычных цементно-песчаных растворов в 10 раз и более.

Повышенная стоимость и специфические свойства полимерцементных материалов определяют рациональные области их применения: тонкослойные покрытия, приклеивающие составы при отделочных и ремонтных работах, гидроизоляционные и герметизирующие, электроизоляционные и омоноличивающие составы.

На технологию приготовления и свойства полимерцементных материалов и соответственно на области их рационального применения большое внимание оказывает физическое состояние полимерного связующего: водный раствор, водная дисперсия, вязкая водонерастворимая жидкость, водонерастворимый порошкообразный продукт. Поэтому в последующих параграфах будут рассмотрены общие особенности полимерцементных материалов на различных по физическому состоянию полимерных вяжущих.

 

К содержанию:  Полимерные и полимерцементные бетоны, растворы и мастики

 

Смотрите также:

 

Свойства бетона   Высокопрочный бетон  Как приготовить бетон и строительные растворы   Бетоны. Бетоносмесители. Бетононасосы. Опалубка  Растворы строительные   Смеси бетонные   Стройматериалы  Гидроизоляция

 

РАСТВОРЫ И БЕТОНЫ, МОДИФИЦИРОВАННЫЕ ПОЛИМЕРАМИ

ПРИНЦИПЫ ПОЛИМЕРНОЙ МОДИФИКАЦИИ ДЛЯ ЦЕМЕНТНЫХ КОМПОЗИЦИЙ

7.2.1. Принципы латексной модификации

7.2.1.4. Физические и механические свойства

7.2.2. Модификация порошкообразными эмульсиями

7.3.1.2. Полимерные латексы

7.2.4. Модификация жидкими смолами

7.2.5. Модификация мономерами

7.3. ТЕХНОЛОГИЯ ПОЛУЧЕНИЯ СИСТЕМ, МОДИФИЦИРОВАННЫХ ЛАТЕКСОМ

7.3.1.3. Заполнители

7.3.2. Подбор состава смеси

7.3.3. Перемешивание, укладка и выдержка

7.4. СВОЙСТВА МОДИФИЦИРОВАННЫХ ЛАТЕКСАМИ СИСТЕМ

7.4.1. Свойства незатвердевших растворов и бетонов.

7.4.1.2. Воздухововлечение

7.4.1.3. Водоудерживаюшая способность

7.4.1.4. Выделение цементного молока и расслоение

7.4.1.5. Особенности схватывания

7.4.2. Свойства затвердевшего раствора и бетона

7.4.2.2 Взаимоотношение между деформациями напряжения и модулями упругости и растяжимости

7.4.2.3 Усадка, ползучесть и термическое расширение модифицированного раствора и бетона

7.4.2.4 Водонепроницаемость и водостойкость

7.4.2.5 Сцепление и прочность сцепления 

7.4.2.6 Сопротивление удару

7.4.2.7 Сопротивление истиранию

7.4.2.8 Химическая стойкость

7.4.2.9 Влияние температуры, термическая стойкость и горючесть

7.4.2.10 Морозостойкость и устойчивость к атмосферным воздействиям

7.5. ПРОИЗВОДСТВО И СВОЙСТВА СИСТЕМ, МОДИФИЦИРОВАННЫХ ПОРОШКООБРАЗНОЙ СУСПЕНЗИЕЙ

7.5.2 Свойства

7.6. ПРОИЗВОДСТВО И СВОЙСТВА СИСТЕМ, МОДИФИЦИРОВАННЫХ ВОДОРАСТВОРИМЫМИ ПОЛИМЕРАМИ

7.6.2 Свойства

7.7. ПРОИЗВОДСТВО И СВОЙСТВА СИСТЕМ, МОДИФИЦИРОВАННЫХ ЖИДКИМИ СМОЛАМИ

7.7.2 Системы, модифицированные эпоксидной смолой

7.7.3 Системы, модифицированные полиуретаном

7.7.4 Другие системы, модифицированные смолами

7.8. ПРОИЗВОДСТВО И СВОЙСТВА СИСТЕМ, МОДИФИЦИРОВАННЫХ МОНОМЕРАМИ

7.9. ПРИМЕНЕНИЕ МОДИФИЦИРОВАННЫХ РАСТВОРОВ И БЕТОНОВ

 

КОМПОНЕНТЫ БЕТОНА И ТРЕБОВАНИЯ К НИМ (ВЯЖУЩИЕ ВЕЩЕСТВА, ЗАПОЛНИТЕЛИ, ДОБАВКИ И ПР.)

ПОРТЛАНДЦЕМЕНТ И ШЛАКОПОРТЛАНДЦЕМЕНТ (ГОСТ 10178)

Быстротвердеющий портландцемент

Сверхбыстротвердеющие цементы (СБТЦ). ВНВ

ГИДРО-SI

Расширяющиеся цементы (РЦ)

Напрягающийся цемент

Портландцемент с пластифицирующими и гидрофобизирующими добавками

Тонкомолотый многокомпонентный цемент (ТМЦ)

ЭМАКО МАКФЛОУ

ГЛИНОЗЕМИСТЫЕ И ВЫСОКОГЛИНОЗЕМИСТЫЕ ЦЕМЕНТЫ (ГОСТ 969)

БЕЛЫЕ ПОРТЛАНДЦЕМЕНТЫ (ГОСТ 965)

Супербелый датский портландцемент

Цветной портландцемент (ГОСТ 15825)

СУЛЬФАТОСТОЙКИЕ ЦЕМЕНТЫ (ГОСТ 22266)

Суперсульфатостойкие цементы

Сульфатостойкий портландцемент с минеральными добавками ССПЦ 400 Д20

ТАМПОНАЖНЫЕ ПОРТЛАНДЦЕМЕНТЫ (ГОСТ 1581)

ЦЕМЕНТ ДЛЯ СТРОИТЕЛЬНЫХ РАСТВОРОВ (ГОСТ 25328)

Кислотоупорный кварцевый кремнефтористый цемент

ЗАПОЛНИТЕЛИ ДЛЯ БЕТОНА

Добавки в бетонные смеси

Минеральные порошки-заменители цемента (активные минеральные добавки и наполнители)

Суперпластификаторы

Методы выдерживания бетона на морозе

Биоциды

Комплексные добавки

Добавки в бетонные смеси. Добавки пластифицирующего действия

Регулирующие схватывание бетонных смесей и твердение бетонов

Регулирующие пористость бетонной смеси и бетона

Придающие бетону специальные свойства

Полифункционального действия

Комплексные добавки-модификаторы

Армирующая фибра

Добавки для бетона

 

ОСОБЕННОСТИ ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ ВЫСОКОПРОЧНЫХ БЕТОНОВ

1. МАТЕРИАЛЫ, ИСПОЛЬЗУЕМЫЕ ДЛЯ ПРИГОТОВЛЕНИЯ БЕТОНА

 

МАТЕРИАЛЫ НА ПОЛИМЕРНОЙ ОСНОВЕ

Эпоксидно-сланцевый состав

Битумно-полимерные и полимерные герметики

Тиоколовые герметики

Герметики марок У-ЗОМ и УТ-31

Хлорсульфированный полиэтилен (ХСПЭ)

Мастика кровлелит

Мастики гидроизоляционные бутилкаучуковые

Мастика бутилкаучуковая холодная — МБК

Мастика герметизирующая нетвердеющая строительная

 

Цементные бетоны. Бетоны

Выбор материалов для бетона

Общие положения по расчету состава бетона

Литература

Добавки в бетон

 

Полимерные материалы

Мастики и растворы. Лакокрасочные материалы

Битумно-полимерная гидроизоляция