НЕОРГАНИЧЕСКИЕ ВЯЖУЩИЕ С ДОБАВКАМИ ПОЛИМЕРНЫХ ВЕЩЕСТВ. Бетонные смеси на основе полимерцементных составов Бетоны на полихлоропреновом и натуральном латексах

  

Вся электронная библиотека >>>

Содержание книги >>>

 

Для студентов обучающихся по специальности «Производство строительных изделий и конструкций»

Минеральные вяжущие вещества


Раздел: Быт. Хозяйство. Строительство. Техника

 

ГЛАВА 16. НЕОРГАНИЧЕСКИЕ ВЯЖУЩИЕ С ДОБАВКАМИ ПОЛИМЕРНЫХ ВЕЩЕСТВ

 

 

В настоящее время резко возрастает применение в строительстве различных вяжущих материалов и бетонов с добавками мономерных и полимерных органических и кремнийорганических веществ. Содержание их в вяжущих материалах может колебаться в больших пределах—от долей процента до 5—10% и более. Эти вещества вводят в портландцемент и его разновидности, получая полимерцемеиты и полимерцементные растворы и бетоны, в глиноземистый и другие цементы, а также в гипсовые вяжущие, получая полимергипсовые растворы и бетоны. Полимеры могут вводиться в вяжущие материалы при помоле последних (обычно до 1 %). Чаще же их применяют в виде водных дисперсий и растворов, которые вводят в бетонные смеси при их приготовлении.

В твердении вяжущих веществ с полимерными добавками обычно участвуют оба компонента. Степень такого участия в большой степени   зависит от свойств и состава как неорганического вяжущего, так и полимерной добавки. В результате бетоны на таких композициях приобретают свойства, заимствованные от каждого компонента исходной смеси. Так, они могут способствовать пластификации бетонных смесей со значительным снижением водосодержания в них, а также воздухововлече-нию и гидрофобизации с резким повышением морозостойкости бетона. Добавки полимеров увеличивают предельную растяжимость бетонов, их ударную вязкость, прочность на растяжение и изгиб, сопротивление истиранию, адгезию к другим материалам и др.

В неорганические вяжущие и бетонные смеси в качестве добавок вводят:

водные дисперсии полимеров — латексы (натуральный и синтетические каучуки), поливинилацетатные, по-ливинилхлоридные и другие эмульсии, способные в смеси с минеральным вяжущим распадаться с выделением воды, связываемой при его гидратации, и частиц полимера, которые слипаются в тонкие эластичные пленки на поверхности новообразований из неорганического вяжущего, усиливая соединение их друг с другом за счет склеивания;

водорастворимые полимеры — фенольиые, карбамидные, эпоксидные и т. д., способные в твердеющем цементном камне переходить в твердое нерастворимое состояние под действием нагревания или щелочной среды, возникающей при гидратации цемента, или специально вводимых добавок-отвердителей.

 

 

Водные дисперсии полимеров представляют собой системы, в которых в дисперсионной среде (воде) взвешены мельчайшие частицы (глобулы) полимера. Их устойчивость против слипания (коагуляции) обеспечивается введением при получении (обычно методами эмульсионной полимеризации мономеров) небольших добавок эмульгаторов — полимерных коллоидов или ПАВ. Эмульгаторы образуют на поверхности глобул полимера экранирующие сольватные оболочки, а также в случае способности эмульгаторов к ионной диссоциации придают частичкам полимера одинаковые по знаку электрические заряды. Все это препятствует их слипанию. В большинстве случаев латексы и эмульсии высокополимеров имеют глобулы с отрицательными зарядами.

При смешивании водных дисперсий с минеральными вяжущими их устойчивость нарушается и они почти мгновенно коагулируют. Коагуляция вызывается: противоположными зарядами зерен минерального вяжущего (в водной суспензии частички портландцемента и глиноземистого цемента имеют положительный заряд) и глобул полимера. Смешение разных по заряду частичек латекса и цемента дает возможность получить наиболее гомогенные смеси; коагулирующим действием многовалентных ионов (Са2+ и др.), образующихся в водной среде при твердении минеральных вяжущих; значительным механическим воздействием при приготовлении бетонных смесей, срывающим стабилизирующие оболочки с поверхности частиц полимера.

Для предотвращения до начала схватывания и твердения минеральных вяжущих преждевременной коагуляции водных дисперсий полимеров прибегают к дополнительной стабилизации их введением специальных веществ — стабилизаторов. Применяют стабилизаторы двух типов: ПАВ и коллоиды, образующие на поверхности частиц полимера защитные гидрофильные оболочки; электролиты, подавляющие действие многовалентных ионов (Са2+ и др.). К первым относятся белки (казеин, желатин), производные целлюлозы, иеионогенные ПАВ (типа ОП-7, ОП-10), соли органических сульфокислот и др.; ко вторым - гидраты и соли щелочных металлов, в частности силикат и фосфат натрия.

При выборе стабилизаторов необходимо учитывать их влияние на структурную вязкость и пластическую прочность полимерцементного теста и на процессы гидратации минеральных вяжущих. Коллоидные стабилизаторы увеличивают вязкость, и вследствие этого для поддержания нужной подвижности смесей необходимо повышенное содержание воды. Сода, фосфат натрия и бура замедляют гидратацию цемента, поташ ускоряет схватывание теста и т.д. Влияет также и вид эмульгатора, введенного при получении латексов и эмульсий. При использовании в качестве эмульгатора поливинилового спирта в ряде случаев водные дисперсии отличаются высокой стабильностью, и дополнительная стабилизация при смешивании их с минеральным вяжущим не требуется. Для эмульсий разных полимеров применяют обычно свои виды стабилизаторов, причем их оптимальное содержание устанавливают опытным путем. В полимерце-ментиые композиции латексы и другие водные эмульсии полимеров вводят в количестве 5—20 % в пересчете на сухое вещество по массе минерального вяжущего.

Бетонные смеси на основе полимерцементных составов готовят различными способами. При хорошо стабилизированных эмульсиях полимера все компоненты смешиваются одновременно в лопастных или других мешалках принудительного действия. В других случаях сначала смешивают минеральное вяжущее с заполнителями, а затем добавляют водную эмульсию полимера и воду в количестве, необходимом для получения бетонной смеси заданной подвижности. Этот способ особенно целесообразен при использовании сухих растворных смесей, централизованно изготовляемых на заводах. При изготовлении смесей с крупнозернистыми и волокнистыми материалами сначала готовят полимерцементное вяжущее, затем в смесители принудительного действия вводят необходимое количество воды и заполнители. Выбор того или иного способа приготовления полимерцементной бетонной смеси зависит от стабильности водных дисперсий полимера в присутствии вяжущего вещества.

Полимерцементные композиции с добавками водорастворимых полимеров имеют свои особенности. В отличие от латексов и других полимерных эмульсий водорастворимые полимеры имеют вязкость во много раз большую, чем вода. Их отверждение — переход в твердое нерастворимое состояние — часто возможно лишь при нагревании или введении отвердителей, многие из которых затрудняют процессы структурообразования минеральных вяжущих веществ. В связи с этим водорастворимые высокополимеры вводятся в количестве от 1 до 2,5 % (в пересчете на сухое вещество) массы неорганического вяжущего. При таком расходе они обычно оказы-рают пластифицирующее действие на бетонную смесь. Бетонные смеси в этом случае готовят в обычном порядке, вводя с водой затворения полимерные смолы с необходимыми добавками для их отверждения в бетоне.

Процессы твердения неорганических вяжущих с полимерными веществами изучены недостаточно. Рядом исследований показано, что в смеси их могут протекать реакции взаимодействия, оказывающие влияние на структуру и свойства образующегося камня.

По данным Ю. С. Черкинского и Г. Ф. Слииченко, характер влияния полимерных добавок на гидратацию цемента определяется, во-первых, природой функциональных групп и, во-вторых, их количеством в органическом соединении. При определенном расположении друг отиосителыю друга влияние функциональных групп на гидратацию цемента усиливается. Установлены также факты упрочнения органических полимеров гидратными новообразованиями и возникновения частичек последних в рент-геноаморфном состоянии. Это обстоятельство, по-видимому, положительно сказывается на прочности образующегося полимерцементного камня.

По данным К- С. Ахмедова с сотрудниками, водорастворимые полиэлектролиты, неиоиогенные полимеры и соответствующие мономеры, содержащие такие активные полярные группы, как ОН, — СООН,— CONli2, по отношению к минералам портландцемента или продуктам их гидратации являются поверхностно-активными веществами. Из них химически активны только карбоксилосодержащие соединения. Добавки всех указанных видов не только изменяют условия и кинетику выделения гидратиых новообразований, но и влияют на морфологию и прочность твердеющей структуры. Наименее активны в этом отношении гидроксилсодержащие полимеры. Высокой адсорбционной способностью отличаются вещества с алкидной группой CONH2. Карбоксилсодержащие полимеры наиболее эффективны в тех случаях, когда необходимо регулирование процессов схватывания цемента, снижения водопотребляемости теста и повышения прочности и долговечности камня.

Механизм формирования структуры полимерцементного камня в общем виде можно представить следующим образом. При изготовлении полимерцементных композиций с латексными и другими эмульсиями сначала идут обычные процессы гидратации и твердения неорганического вяжущего. По мере связывания воды в гидраты, а также испарения из смеси свободной воды происходит повышение концентрации полимера в дисперсии и ее постепенная коагуляция. Глобулы полимера слипаются в эластичные тонкие пленки. Последние, заполняя «неплотности» в контактах поликристаллических сростков, а также капилляры, поры и микротрещины цементного камня, способствуют его упрочнению и одновременно придают камню эластичность, благодаря дополнительному «шарнирному» соединению новообразований минерального вяжущего с частицами полимера.

Полимерцемеитные композиции наиболее интенсивно твердеют в воздушно-сухих условиях, когда в результате испарения воды происходит быстрое упрочнение полимерной составляющей связующего. Во влажной среде, исключающей высыхание, полимерная часть упрочняется медленно и прочность камня оказывается ниже, чем при твердении в воздушно-сухих условиях. При твердении полимерцементных композиций с добавками водорастворимых полимеров упрочнение камня происходит также в результате двух одновременно протекающих процессов: гидратации минерального вяжущего вещества и полимеризационного твердения смол с переходом их в нерастворимое состояние. При этом отверждение полимерной составляющей не связывается с ее обязательным обезвоживанием, поэтому эти композиции могут твердеть во влажной среде. При водном твердении.бетоны на карба-мидных и эпоксидных смолах набирают прочность даже быстрее, чем бетоны без полимерных добавок. Свойства вяжущих и бетонов с добавкой полимеров зависят от вида и количества полимерной добавки, используемых при этом стабилизаторов (или отвердителей), а также от условий твердения и других технологических факторов.

Истинная плотность полимеров в 2—2,5 раза меньше, чем минеральных вяжущих веществ. В связи с этим можно было бы полагать, что с увеличением количества вводимой полимерной добавки средняя плотность полимерцементных смесей и бетонов будет уменьшаться. Фактически это не наблюдается. Лишь при малых количествах полимерных добавок уменьшается средняя плотность затвердевших композиций, по-видимому, вследствие воздухововлечения.

Водопотребность при небольшом их содержании (отношение массы сухого полимера к массе цемента Д/Д=» = 0,02...0,05) уменьшается, а затем возрастает. При этом эмульсии полимеров придают смесям особые вязкопла-стичные свойства. При одинаковой пластичности по рас-плыву конуса при Я/Д>0,2 полимерцементные смеси отличаются повышенной вязкостью и хуже укладываются, чем смеси на минеральном вяжущем без добавок.

Сроки схватывания этих вяжущих обычно с увеличением содержания полимерных добавок замедляются. При использовании в качестве стабилизаторов коллоидов (например, казеината аммония) сильно замедляется рост пластической прочности смеси. Твердение данных композиций сопровождается усадкой, в несколько раз превышающей усадку обычного цемента. Усадки возрастают с увеличением количества полимерной добавки.

Введение в минеральные вяжущие полимерных добавок способствует значительному увеличению их прочности на растяжение и изгиб, а также сопротивление удару. Максимальные показатели прочности достигаются при содержании водной дисперсии полимера в количестве до 15—20% (по массе сухого остатка) массы минерального вяжущего. Большая добавка полимера приводит к ухудшению этих свойств, что объясняется измеиепи-ями структуры полимерцементиого камня. При большом содержании полимера в. композиции цементирующие новообразования, возникающие при гидратации минерального вяжущего, в значительной мере разобщены пленками полимера и не образуют пространственной структурной сетки.

Абсолютные показатели прочности полимерцементных вяжущих с латексами и другими эмульсиями полимеров, как отмечалось, сильно зависят от влажности среды, в которой протекают их схватывание и твердение. Через 28 сут твердения при относительной влажности воздуха 50 % полимерцементный раствор с добавкой 20 % поли-винилацетатной эмульсии (в пересчете на сухое вещество) имеет прочность на растяжение и изгиб в 2—2,5 раза выше, чем цементный раствор без добавок. В среде с повышенной влажностью (75%) через 28 сут полимер-цементный раствор приобретает прочность на растяжение и изгиб всего на 30—40 % больше, чем раствор без добавок поливииилацетата. В ряде случаев при введении в бетоны полимерных добавок их прочность на сжатие снижается и в тем большей степени, чем больше добавка полимера и выше относительная влажность среды, в которой происходит твердение.

В отличие от обычных бетонов полимерцементные бетоны представляют собой материалы, обладающие высокими вязкоэластическими свойствами. Их деформации при сжатии, растяжении, изгибе, а также при ползучести выше деформаций цементных бетонов.

Особенностью бетонов на этих вяжущих является их высокая износостойкость. Сопротивление истиранию возрастает с увеличением содержания в них полимерных добавок. Бетон с содержанием полихлоропренового латекса или поливииилацетатной эмульсии в количестве 20 % (в пересчете на сухое вещество) массы цемента по износостойкости в 12—15 раз выше обычного бетона.

Химическая стойкость полимерцементных композиций зависит от вида и количества вводимого полимера. Бетоны на полихлоропреновом и натуральном латексах обладают повышенной стойкостью против действия кислот. Бетоны с добавками поливинилацетата более стойки в отношении масел и нефти.

Ценным свойством полимерцементных композиций является их высокая адгезия практически ко всем строительным материалам. Свежеуложенный бетон с добавками поливинилацетата и других полимеров склеивается с ранее уложенным бетоном так, что при нагрузке на стык разрушается старый бетон. Клеящая способность полимерцементных смесей возрастает пропорционально содержанию в них полимеров от 0 до 15—20 % массы цемента, приближаясь к показателям клеящих свойств чистого полимера. Адгезионные свойства полимерцементных вяжущих наиболее полно проявляются при твердении в воздушно-сухих условиях.

Полимерцементные бетоны и растворы используются для устройства полов в общественных и промышленных зданиях, покрытий дорог, аэродромов и других конструкций, где требуется высокая механическая прочность и износостойкость, а иногда и химическая стойкость (против действия минеральных масел, нефти). Высокие адгезионные свойства позволяют применять их для ремонта (заделки) трещин в бетонных и каменных конструкциях, а также для соединения (склеивания) предварительно заготовляемых бетонных изделий. Полимерцементные штукатурки используют в виде защитных покрытий железобетонных и других конструкций, а также для декоративной отделки зданий.

В заключение можно привести результаты некоторых исследований, свидетельствующие об эффективности применения полимеров в качестве добавок, улучшающих свойства бетонных смесей. А. В. Саталкин, О. В. Кунце-вич, В. Д, Солнцева, О. С. Попова и др. особое значение придают полимерцементным композициям, получаемым на основе водорастворимых смол (эпоксидных ТЭГ, ДЭГ и полиамидной смолы № 89) [32]. По их данным, бетоны с этими смолами, вводимыми в количестве до 2 % массы цемента, твердеют в воздушно-влажных условиях, не увеличивают, а в некоторых случаях снижают усадку и ползучесть, повышают прочность, растяжимость, трещииостойкость. Высокую водонепроницаемость придает растворам и бетонам добавка смеси резорцина с формальдегидом (1:1 по массе) в количестве 2 %' массы цемента. Эти составы успешно применены при устройстве гидроизоляционного покрытия на автодорожных мостах.

По данным И. Н. Ахвердова с сотрудниками, добавки дивинилстирольного латекса СКС-65ГП марки ЛС и особенно полиэтиленовой эмульсии в бетонные смеси в количестве 5—7,5 % массы цемента (полимерцементное отношение П[Ц=0,05...0,075) увеличивали прочность бетонов и резко улучшали их стойкость против действия жиров и других агрессивных веществ, свойственных предприятиям мясной и молочной промышленности.

По другим данным, ввод в бетонные смеси водорастворимых эпоксидных смол в количестве 1—2 % совместно с ускорителями твердения, например Ca(N03h, способствует увеличению прочности бетона на 30—50 %,

На основе некоторых полимерных веществ (например, сульфурированной меламиноформальдегидной смолы) разработаны составы так называемых суперпластификаторов. Добавка их в бетонные смеси в количестве 0,2—0,5 % массы цемента обеспечивает возможность увеличения их подвижности до 50 см без расслоения при обычных расходах воды. Снижение количества воды в смеси на 12—17 % по сравнению с количеством воды без добавки создает предпосылки значительного увеличения прочности особенно при повышенных температурах (50—60 °С). Особенностью некоторых суперпластификаторов является прекращение эффекта пластификации через 30—90 мин.

Применение этих веществ обеспечивает большое снижение затрат труда на укладку бетонных смесей в формы и опалубки. В настоящее время значительное применение получил суперпластификатор С-3 (НИИЖБ)

 

К содержанию книги: "Минеральные вяжущие вещества"

 

Смотрите также:

 

ВЯЖУЩИЕ. КЛАССИФИКАЦИЯ ВЯЖУЩИХ ВЕЩЕСТВ

ВОЗДУШНЫЕ ВЯЖУЩИЕ ВЕЩЕСТВА

ГИДРАВЛИЧЕСКИЕ ВЯЖУЩИЕ ВЕЩЕСТВА

 

Вяжущие материалы и заполнители

Глина   Известь   Цементы   Гипс   Заполнители

 

Строительные материалы для строительства дома

Вяжущие материалы

Черные вяжущие материалы

 

ИСКУССТВЕННЫЕ КАМЕННЫЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ НА ОСНОВЕ  НЕОРГАНИЧЕСКИХ МИНЕРАЛЬНЫХ ВЯЖУЩИХ

ИЗДЕЛИЯ НА ОСНОВЕ ИЗВЕСТИ

МАТЕРИАЛЫ И ИЗДЕЛИЯ НА МАГНЕЗИАЛЬНЫХ ВЯЖУЩИХ

 

НЕОРГАНИЧЕСКИЕ ВЯЖУЩИЕ ВЕЩЕСТВА

 

Минеральные вяжущие вещества

Искусственные каменные материалы на основе минеральных вяжущих веществ

 Битумные и вяжущие вещества

 

Исходные материалы

Минеральные вяжущие вещества

 

Бетоны

КОМПОНЕНТЫ БЕТОНА И ТРЕБОВАНИЯ К НИМ (ВЯЖУЩИЕ ВЕЩЕСТВА, ЗАПОЛНИТЕЛИ, ДОБАВКИ И ПР.)

ПОРТЛАНДЦЕМЕНТ И ШЛАКОПОРТЛАНДЦЕМЕНТ (ГОСТ 10178)

Быстротвердеющий портландцемент

Сверхбыстротвердеющие цементы (СБТЦ). ВНВ

ГИДРО-SI

Расширяющиеся цементы (РЦ)

Напрягающийся цемент

Портландцемент с пластифицирующими и гидрофобизирующими добавками

Тонкомолотый многокомпонентный цемент (ТМЦ)

ЭМАКО МАКФЛОУ

ГЛИНОЗЕМИСТЫЕ И ВЫСОКОГЛИНОЗЕМИСТЫЕ ЦЕМЕНТЫ (ГОСТ 969)

БЕЛЫЕ ПОРТЛАНДЦЕМЕНТЫ (ГОСТ 965)

Супербелый датский портландцемент

Цветной портландцемент (ГОСТ 15825)

СУЛЬФАТОСТОЙКИЕ ЦЕМЕНТЫ (ГОСТ 22266)

Суперсульфатостойкие цементы

Сульфатостойкий портландцемент с минеральными добавками ССПЦ 400 Д20

ТАМПОНАЖНЫЕ ПОРТЛАНДЦЕМЕНТЫ (ГОСТ 1581)

ЦЕМЕНТ ДЛЯ СТРОИТЕЛЬНЫХ РАСТВОРОВ (ГОСТ 25328)

Кислотоупорный кварцевый кремнефтористый цемент

ЗАПОЛНИТЕЛИ ДЛЯ БЕТОНА

Добавки в бетонные смеси

Минеральные порошки-заменители цемента (активные минеральные добавки и наполнители)

Суперпластификаторы

Методы выдерживания бетона на морозе

Биоциды

Комплексные добавки

Добавки в бетонные смеси. Добавки пластифицирующего действия

Регулирующие схватывание бетонных смесей и твердение бетонов

Регулирующие пористость бетонной смеси и бетона

Придающие бетону специальные свойства

Полифункционального действия

Комплексные добавки-модификаторы

Армирующая фибра

Добавки для бетона