РЕДУЦИРОВАНИЕ ТРУБ. Прокатку труб с целью уменьшения их диаметра редуцирование

 

  Вся электронная библиотека >>>

 Трубы  >>>

  

 

Производство труб


Раздел: Производство

   

Глава VIII РЕДУЦИРОВАНИЕ ТРУБ 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПРОЦЕССА

  

Прокатку труб с целью уменьшения их диаметра (редуцирование) весьма широко применяют почти во всех цехах по производству горячекатаных труб, а также при изготовлении труб сваркой. Это объясняется тем, что получение труб малых размеров обычно связано с ощутимыми потерями производительности трубопрокатных или трубосварочных агрегатов и, следовательно, с удорожанием продукции. Кроме того, в некоторых случаях, например, прокатка труб диам. менее 60—70 мм или труб с весьма большой толщиной стенки и небольшим внутренним отверстием затруднена, так как требует применения оправок слишком малого диаметра.

Редуцирование осуществляется после дополнительного нагрева (или подогрева) труб до 850—1100 °С прокаткой их на многоклетевых непрерывных станах (с числом клетей до 24) без применения внутреннего инструмента (оправки). В зависимости от принятой системы работы этот процесс может протекать с увеличением толщины стенки или с ее уменьшением. В первом случае прокатку ведут без натяжения (или с очень незначительным натяжением); а во втором — с большим натяжением. Второй случай, как более прогрессивный, получил распространение в последнее десятилетие, так как позволяет осуществлять значительно большую редукцию, а уменьшение толщины стенки при этом расширяет сортамент прокатываемых труб более экономичными — тонкостенными трубами.

Возможность утонения стенки при редуцировании позволяет получать на основном трубопрокатном агрегате трубы с несколько большей толщиной стенки (иногда на 20—30%). Это заметно повышает производительность агрегата.

Вместе с тем во многих случаях сохранил свое значение и более старый принцип работы — свободное редуцирование без натяжения. В основном это относится к случаям редуцирования сравнительно толстостенных труб, когда даже при больших натяжениях заметно уменьшить толщину стенки становится затруднительным. Следует отметить, что во многих трубопрокатных цехах установлены редукционные станы, которые рассчитаны на свободную прокатку. Эти станы еще длительное время будут эксплуатироваться и, следовательно, редуцирование без натяжения будет широко применяться.

Рассмотрим, как изменяется толщина стенки трубы при свободном редуцировании, когда отсутствуют осевые усилия натяжения или подпора, а схема напряженного состояния характеризуется сжимающими напряжениями. В. JI. Колмогоров и А. 3. Глейберг, исходя из того, что действительное изменение стенки отвечает минимальной работе деформации, и используя принцип возможных перемещений, дали теоретическое определение изменения толщины стенки при редуцировании. При этом было сделано допущение, что неравномерность* деформации существенно не влияет на изменение толщины стенки, а силы внешнего трения не учиты вали, так как они значительно меньше внутренних сопротивлений. На  89 показаны кривые изменения толщины стенки от начальной SQ до заданной S для малоупрочняющихся сталей в зависимости от степени редуцирования от исходного диаметра DT0 ДО конечного DT (отношение DT/DTO) и геометрического фактора— тонкостейности труб (отношение S0/DT0).

При малых степенях редуцирования сопротивление продольному истечению оказывается больше сопротивления истечению внутрь, что вызывает утолщение стенки. С ростом величины деформации интенсивность утолщения стенки возрастает. Однако вместе с тем возрастает и сопротивление истечению внутрь трубы. При определенной величине редуцирования утолщение стенки достигает своего максимума и последующее увеличение степени редуцирования приводит к более интенсивному росту сопротивления истечению внутрь и в результате утолщение начинает уменьшаться.

Между тем обычно известна только толщина стенки готовой проредуци- рованной трубы и при использовании этих кривых приходится задаваться искомым значением, т. е. пользоваться методом последовательного приближения.

Характер изменения толщины стенки резко изменяется, если процесс осуществлять с натяжением. Как уже указывалось, наличие и величина осевых напряжений характеризуются скоростными условиями деформации на непрерывном стане, показателем которых является коэффициент кинематического натяжения.

При редуцировании с натяжением условия деформации концов труб отличаются от условий деформации середины трубы, когда процесс прокатки уже стабилизировался. В процессе заполнения стана или при выходе трубы из стана концы трубы воспринимают лишь часть натяжения, а прокатка, например в первой клети до момента захода трубы во вторую клеть, вообще проходит без натяжения. В результате концы труб всегда утолщаются, что является недостатком процесса редуцирования с натяжением.

Величина обрези может быть несколько меньше длины утолщенного конца из-за использования плюсового допуска на толщину стенки. Наличие утолщенных концов в значительной мере влияет на экономичность процесса редуцирования, так как эти концы подлежат обрезке и являются невозвратимыми издержками производства. В связи с этим процесс прокатки с натяжением применяют только в случае получения после редуцирования труб длиной более 40—50 м, когда относительные потери в обрезь снижаются до уровня, характерного для любого другого способа прокатки.

Приведенные методы расчета изменения толщины стеьжи позволяют в конечном итоге определять коэффициент вытяжки как для случая свободного редуцирования, так и для случая прокатки с натяжением.

При обжатии, равном 8—10%, и при коэффициенте пластического натяжения 0,7—0,75 величина пробуксовки характеризуется коэффициентом ix = 0,83—0,88.

Из рассмотрения формул (166 и 167) нетрудно заметить, как точно должны соблюдаться скоростные параметры в каждой клети, чтобы прокатка протекала по расчетному режиму.

Групповой привод валков в редукционных станах старой конструкции имеет постоянное соотношение числа оборотов валков во всех клетях, которые только в частном случае для труб одного размера могут соответствовать режиму свободной прокатки. Редуцирование труб всех других размеров будет происходить с другими вытяжками, следовательно, свободный режим прокатки не будет выдерживаться. Практически в таких станах всегда процесс протекает с небольшим натяжением. Индивидуальный привод валков каждой клети с тонкой регулировкой их скорости позволяет создавать разные режимы натяжения, в том числе и режим свободной прокатки.

Поскольку переднее и заднее натяжения создают моменты, направленные в разные стороны, то общий момент вращения валков в каждой клети может возрастать или уменьшаться в зависимости от соотношения усилий переднего и заднего натяжения.

В этом отношении условия, в которых находятся начальные и последние 2—3 клети, неодинаковы. Если момент прокатки в первых клетях по мере прохождения трубы в последующих клетях уменьшается за счет натяжения, то момент прокатки в последних клетях, наоборот, должен быть выше, так как эти клети испытывают в основном заднее натяжение. И лишь в средних клетях в связи с близкими значениями переднего и заднего натяжения момент прокатки при установившемся режиме мало отличается от расчетного. При прочностном расчете узлов привода стана, работающего с натяжением, необходимо иметь в виду, что момент прокатки кратковременно, но весьма резко возрастает в период захвата трубы валками, что объясняется большой разницей в скоростях трубы и валков. Возникающая при этом пиковая нагрузка, превышающая установившуюся иногда в несколько раз (особенно при редуцировании с большим натяжением), может послужить причиной поломок механизма привода. Поэтому при расчетах эту пиковую нагрузку учитывают введением соответствующего коэффициента, принимаемого равным 2—3.

 

СОДЕРЖАНИЕ:  Производство труб

 

Смотрите также:

 

Редукционно-растяжной стан. Состав и расположение...

Снижение тепловых потерь позволяет исключить или уменьшить подогрев труб перед последующим редуцированием, или совместить оправочную и безоправочную прокатку в одном стане.

 

Современные редукционные станы и калибровка их валов.

Основной же целью редукционного стана с натяжением является значительное уменьшение толщины стенки трубы при одновременном уменьшении ее наружного диаметра. При редуцировании с натяжением выявились значительные технические...

 

Процесс холодной прокатки бесшовных труб...

Уменьшение внутреннего диаметра трубы от 66 до 52 мм происходит в соответствии с конусностью оправки (учитывая редуцирование на 2 мм в захватном участке).
На станах холодной прокатки изготавливают трубы диаметром от 4 до 450 мм. с...

 

холодно деформированные трубы. стан холодной...

...участков: участка редуцирования трубы по диаметру, ограниченного центральным углом вр9 и участка обжатия стенки
Трубопрокатные цехи с горячей прокаткой бесшовных труб. Холодное волочение труб применяется для уменьшения сечения и...

 

Станы для радиальной прокатки труб большого диаметра.

В действительности при прокатке труб больш