Электрон это частица или волна

 

«Эврика» 1962. НЕИЗБЕЖНОСТЬ СТРАННОГО МИРА

 

 

Электрон это частица или волна

 

 

 

А что, собственно, надо было теоретически рассчитать и потом в лаборатории измерить? Это само собой вытекало из идеи двуликого электрона — частицы-волны. Как у создания корпускулярного, у него есть свой импульс в движении: произведение массы на скорость (вспомните киносъемки частиц в физических лабораториях). Как у создания волнового, если только догадка верна, у него должна быть своя длина волны и частота какого-то связанного с ним колебательного процесса (вспомните фотоны — световые кванты). Электрон — един в этих двух лицах. Так, стало быть, должна же существовать какая-то связь — точная количественная связь! — между обеими его ипостасями?

 

Безусловно. Скажем, когда импульс электрона велик, длина его предполагаемой волны мала... Или что-нибудь в таком роде. Словом, мудреная или простенькая — какая-то связь тут должна быть!

 

Вот ее-то и надо было найти — ее надо было продемонстрировать сначала чисто математически, (выкладками на бумаге, опыт здесь помочь еще не мог.

Де Бройль это сделал. В мирной тишине рабочего кабинета этот принц, недавно вернувшийся с военной службы, человек совсем не героической внешности, ничем не прославивший французскую армию и флот, одержал бескорыстную рыцарскую победу над невидимым и ускользающим противником — победу более нужную людям, чем все подвиги его предков на всех турнирах и полях сражений старой Европы.

На протяжении десяти лет Эйнштейн имел случай дважды восхититься ходом физического мышления двух своих младших современников. Это чувство вызвала в нем «музыкальность мысли» Бора, расчислившего в 1913 году электронные орбиты. И такое же чувство пробудила в нем простота, с какою де Бройль в 1923 году вычислил длину никому не известных электронных волн. (Вклад молодого француза в современную физику он назвал гениальным.)

 

Получилось так, что для обычных «лабораторных» электронов—не слишком быстрых и не слишком медленных — их волны должны по малости длины соревноваться с рентгеновскими. Вскоре в разных странах экспериментаторы взялись за опыты, которые прежде показались бы полной бессмыслицей, — за ловлю каких-то «волн материи».

 

Можно подумать: а зачем было их ловить? Разве для подтверждения странной волнообразности электрона мало было уже одного того, что она хорошо объясняла прерывистый ряд боровских орбит в атомах? Мало! Кто поручился бы, что у природы нет в запасе вместо непонятной двулико- сти электрона какой-нибудь другой — более правдоподобной — причины для квантовых скачков по лестнице разрешенных уровней энергии в атоме? Кто присягнул бы, что образ «частица-волна» не праздная выдумка теоретика, ловкая,' удачная, но все же только выдумка?

 

Двуликость электрона надо было проверить прямыми опытами.

 

Электрон-частица... Это в проверке не нуждалось: он был открыт, как частица, как «атом электричества».

 

Электрон-волна... Это можно было установить, посмотрев в лаборатории, способен ли он на поступки, допустимые только для волн. Нагляднейший из таких поступков — огибание препятствий: та самая дифракция, которая в свое время помогла восторжествовать волновой теории света.

Как всегда, когда в естествознании происходят события громадной важности, об успехах

 

мало кому понятных исследований время от времени громогласно сообщали в конце 20-х и начале 30-х годов даже ежедневные газеты. Дифракция электронов была обнаружена — они огибали препятствия с такой же бесспорностью, как световые лучи. Или рентгеновские. Они огибали атомы в кристаллических решетках с такой же наглядностью, с какою морские волны огибают мол.

 

Сегодня в любой книге по атомной физике, в которой рассказывается «все по порядку», можно увидеть рядом две фотографии: на одной — дифракционный рентгеновский снимок кристалла, на другой — дифракционный снимок того же кристалла в электронных «лучах». Они похожи почти как два отпечатка с одного негатива. Это удивительное сходство и сейчас производит большое впечатление. Тридцать лет назад оно производило впечатление ошеломляющее. И это легко понять.

 

Де Бройль вспоминает, что его диссертация была принята «сначала с удивлением, к которому, несомненно, примешивалась какая-то доля скептицизма». Да и вправду: легко Ли было согласиться с мыслью, что все вещество вокруг нас и в нас самих — словом, всюду в природе — состоит из частичек, у которых есть еще и второе лицо — какая-то вол- нообразность?! Физики еще не успели освоиться до конца с двойственностью света: уже Два десятилетия существовавшее в науке представление о квантах излучения — световых частицах — еще не оформилось в слове «фотон» (помните, оно появилось, это слово, лишь в 1926 году). А тут уже предлагалось принять за истину и двойственность вещества! Нет, пока эта истина оставалась кабинетной, выведенной на бумаге математическими значками, душевно легче было не принимать ее всерьез как физическую истину. Еще можно было позволить себе отшучиваться — мало ли какая фантастика может пригрезиться в математических видениях!

 

Абрам Федорович Иоффе рассказывал однажды, как в 1923 году он познакомился на 4-м Сольвеевском конгрессе физиков в Брюсселе с Полем Ланжевеном. Знакомство было окрашено и политическими и чисто научными страстями той поры. Ланжевен, выдающийся физик и общественный деятель, человек редкого благородства и смелых убеждений, презирал французских правителей во главе с Раймондом Пуанкаре — одним из организаторов недавних кровавых походов Антанты на молодую Республику Советов.

Физик из революционной России среди участников Соль- веевского конгресса! — это было радостное открытие для Ланжевена. Он просил Иоффе поверить, что ему, французу, стыдно за Францию Пуанкаре. Ланжевен был полон всяческого дружелюбия. Он равно откровенно говорил и о политике и о своих научных взглядах. Между прочим, он рассказал Иоффе, что один его ученик в Париже представил чрезвычайно интересную диссертацию. «Идеи диссертанта, конечно, вздорны, — сказал Ланжевен, — но развиты с таким изяществом и блеском, что я принял диссертацию к защите». Он назвал имя автора работы: Луи де Бройль.

 

Абрам Федорович Иоффе вспомнил эту историю в разговоре с двумя литераторами в феврале 1960 года. Такие вещи помнятся и через 37 лет! Полный величайшего уважения к Ланжевену академик Иоффе с улыбкой повторял его тогдашние слова. Улыбка означала: «Ланжевена нельзя винить в слепоте — он был ученым другого поколения, чем де Бройль».

 

Один из собеседников Иоффе, писатель Даниил Гранин, работал в то время над романом, где героями были физики. Он тотчас сказал: «Но замечательна широта Ланжевена— не согласившись с научными идеями ученика, он все- таки дал жизнь его диссертации!» А другой собеседник — автор этих строк — немедленно подумал, как интересно будет привести эту историю в рассказе о рождении современной механики микромира. Словом, каждый из нас со своей колокольни взглянул на рассказанный старым академиком интереснейший эпизод. «Вот она, эйнштейновская драма идей!» — подумал я.

 

Тут, в самом деле, все было полно значения.

 

Подумайте, советский физик на международном конгресс се был в начале 20-х годов своего рода диковиной, хотя одна из революционнейших эпох в познании природы неспроста совпала с самой революционной порой в истории человеческого социального мышления, и гость из молодой России должен был бы явиться почетным гостем не для одного Ланжевена, будущего коммуниста, а для всех людей науки. Полно значения было и ланжевеновекое невольное чувство стыда за беды, принесенные стране революции реакцией Запада. Драматичен был и неосознанный конфликт в дуще ученого — конфликт между смелостью его исторических взглядов и осторожностью взглядов научных. Будоражило мысль и скрытое несогласие учителя и ученика, преодоленное только нравственной широтой Ланжевена, о которой с восхищением сразу сказал Гранин. Впрочем, только ли нравственной? Может быть, Ланжевен благословил «изящную, но вздорную» диссертацию де Бройля, кроме всего прочего, потому, что втайне чувствовал возможную правоту ученика, хотя и не мог с нею примириться? (Известно, что Ланжевен сам послал дебройлевскую работу Эйнштейну. Значит, он сознавал ее серьезность, ее важность и глубину?)

 

Этот давний эпизод ярче яркого осветил муки рождения квантовой физики.

Миновало три года со времени защиты дебройлевской диссертации. И вот в научных журналах всего мира печатаются «электронные снимки» кристаллов, совершенно подобные хорошим рентгенограммам. И опытные данные подтверждают с желанной точностью дебройлевскую формулу для длины электронных волн! Согласитесь, такие события не могли оставить современников равнодушными.

(Пожалуй, удивительно, что волновые свойства вещества не были впервые открыты в лаборатории на улице Байрона в Париже, где столько лет работал с рентгеновскими лучами де Бройль-старший, Морис. Ведь там, в этой лаборатории, проводилось множество опытов по фотоэлектрическому эффекту, в которых рентгеновское излучение обнаруживало свойства потока частиц. И там у де Бройля-младшего впервые родились его теоретические идеи...)

 

Подтверждение кабинетной истины пришло сначала от Дэвиссона и Джермера из Америки, потом от Томсона — сына старого • Джи-Джи — из Англии, потом от Кикучи из Японии, потом от Руппа из Германии, потом от Тартаковского из Советской России. И еще и еще — из лабораторий различнейших стран. Многократно доказанная на всевозможные лады, но всякий раз прямо и непосредственно, волнообраз- ность электрона стала таким же неопровержимым физическим фактом, как и его корпускулярность.

Это было второе открытие электрона.

 

И еще громче — это было, в сущности, второе открытие вещества, второе — после открытия его атомной зернистости.

 

В конце 20-х годов везде, где люди спорят о злобе дня — на улице и за домашним чаем, в поездах и за столиками кафе,— совсем незнающие расспрашивали относительно знающих о «волнах материи», как сегодня люди расспрашивают друг друга о таинственном антивеществе, о непонятном крушении еще более непонятного закона сохранения четности, о неведомой праматерии и тому подобных вещах.

 

Тот давний всеобщий интерес к новым странностям микромира был и в самом деле того же происхождения, что интерес сегодняшний к странностям новейшим. Конечно, для природы любые странности — и новые и новейшие — стары, как она сама. Но человеку они открываются постепенно. И мы не знаем, какие удивления нам еще суждены.

Одно несомненно — последнего удивления не будет. И радость узнавания мира — единственная, у которой не бывает конца в жизни человека. Чем отвлеченней она, тем бескорыстней. И она равно доступна всем — и академику и ребенку: дело тут не в степени образованности — перед лицом неизлечимой человеческой страсти знать, как устроен мир, равны первоклассник и доктор наук. Жажда одна, утоляется она только по-разному.

Но если радости познания у них в общем-то очень похожи, то печали неведения совсем различны. Ах, если бы академику— детскую убежденность, что есть на свете взрослые, знающие все! Но нет, ученому, идущему впереди, не к кому обращаться за ответами, кроме самой природы. И не школьные неприятности, вроде двоек, сопутствуют в его жизни радостям узнавания мира, а треволнения посущественней.

Знал ли де Бройль, какие огорчения принесет ему и какую смуту посеет в физике, а за физикой — и в философии естествознания открытие неких «волн материи»?

 

В 1923 году он этого не знал. Но через тридцать лет он вынужден был сказать уже знакомые нам слова, что открытие двойственности волн-частиц было «наиболее драматическим событием в современной микрофизике».

 

Мы убедились: первые же открывшиеся науке элементарные частицы — фотон и электрон — выдали физикам такую непредвиденную тайну материи, что микромир предстал перед ними в совершенно неожиданном обличье. Фотон с помощью Эйнштейна и электрон с помощью де Бройля рассказали физикам, что материя в своих глубинах двулика. Одинаково двулика и в атомных глубинах вещества и в структурных глубинах силовых полей, так что и разница-то между веществом и полями в мире элементарных частиц стирается: все «первоосновы материи» — «кентавры», частицы со свойствами волн или волны со свойствами частиц.

 

Ничего подобного не знала классическая физика. Она никогда не имела дела с миром таких причудливых сущностей. Не потому ли, что она раскрывала законы природы в явлениях других — несравненно больших — масштабов?

Да, именно поэтому. Прежде всего поэтому. Тут очень ярок переход количества в качество.

 

Когда де Бройль искал связь между свойствами электрона, как частицы и как волны, он имел право не интересоваться никакими иными характерными чертами этой микро- детальки любого вещества. Заряд? Возможные размеры? Вероятная форма?.. Все это было не важно для его цели. Так не важны были Кеплеру красноватый цвет Марса или температура Солнца для установления законов обращения планет. Электрон был для де Бройля движущимся образованием из материи и больше ничем — кусочком материи в двух проявлениях: корпускулярном и волновом. Любой другой кусочек материи^ равный электрону по массе — например, еще не открытый в ту пору позитрон, — должен был бы обладать и волновыми свойствами электрона. Если бы мы могли отковырять от стула щепочку электронного веса, то и ей была бы свойственна та же мера волнообраз- ности.

 

Короче говоря, для предсказанных де Бройлем волновых свойств вещества индивидуальные особенности движущейся массы не имели решительно никакого значения. В его знаменитой формуле длина «волн материи» была связана только с величиною массы и скорости тела.

 

Но ведь и протон — тело, и свинцовая дробинка—тело, и Земля — тело. Все это кусочки материи, крупицы массы. Протон в две тысячи раз массивней электрона. Дробинка в миллиарды триллионов раз массивней протона. Земля, со всеми ее горами и океанами, городами и людьми, невообразимо массивней дробинки. Однако для механики и она — только движущаяся масса. Так что же, стало быть, и Земле, и дробинке, и протону должна быть присуща раскрытая де Бройлем некая волнообразноеть?

 

Несомненно!

 

Природа не знает жестких границ. Нет оснований думать, что она могла прикомандировать волновые свойства только каким-то очень маленьким движущимся массам, а тем, что побольше, сказала — «обойдетесь и так». Маленькая масса, побольше, очень большая — все это наши, человеческие, земные мерки, а в хозяйстве вселенной такие оценки — чистейшая условность. Так ли мал электрон, если он в сотни тысяч раз массивней квантов видимого света?

 

Да, это было не так уж громко сказано, что открытие двойственности электрона явилось как бы вторым открытием вещества: двуликость — волна-частица—лежит в природе всех физических тел. Электрон—не исключение", а только нагляднейшее подтверждение правила.

Так, значит, классическая механика была слепа. Сама того не подозревая, она уже имела дело с причудливыми кентаврами? Конечно. Но вернее было бы сказать, что ньютонова механика была не слепой, а лишь наполовину зрячей: она прекрасно видела корпускулярность всех тел и не замечала только их волновых свойств. Однако как же могло случиться, что та,кая фундаментальная черта движущейся материи ускользнула от ее внимания?

 

 

К содержанию книги: Научно-художественная книга о физике и физиках

 

 Смотрите также:

  

Физика. энциклопедия по физике

Книга содержит сведения о жизни и деятельности ученых, внесших значительный вклад в развитие науки.
О физике

заниматься физикой как наукой или физикой, которая...

Эта книга адресована всем, кто интересуется физикой. В наше время знание основ физики необходимо каждому, чтобы иметь правильное представление об окружающем мире

Энциклопедический словарь

И старшего. Школьного возраста. 2-е издание исправленное и дополненное. В этой книге  Гиндикин С. Г. Рассказы о физиках и математиках

 

И. Г. Бехер. книга Бехера Подземная физика

В 1667 г. появилась книга И. Бехера «Подземная физика», в которой нашли отражение идеи автора о составных первоначалах сложных тел.

 

Последние добавления:

 

Право в медицине      Рыбаков. Русская история     Криминалист   ГПК РФ