Второй закон Менделя - Закон расщепления. Гипотеза чистоты гамет

Вся электронная библиотека      Поиск по сайту

 

ОБЩАЯ БИОЛОГИЯ

 

 

Второй закон Менделя - Закон расщепления

Гипотеза чистоты гамет

 

Смотрите также:

Биология

 

Биографии учёных биологов

 

История медицины

 

Микробиология

 

Физиология человека

 

Общая биология

 

Ботаника

 

Необычные растения

 

Жизнь зелёного растения

 

Лекарственные растения

 

Необычные деревья

 

Мхи

 

Лишайники

 

Древние растения

 

Пособие по биологии

 

Валеология

 

Естествознание

 

История медицины

 

Медицинская библиотека

Если потомков первого поколения, одинаковых по изу чаемому признаку, скрестить между собой, то во втором поколении признаки обоих родителей появляются в определенном числовом соотношении: 3/4 особей будут иметь доминантный признак, 'Д — рецессивный.

 

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несет доминантный признак, а часть — рецессивный, называется расщеплением. Следовательно, рецессивный признак у гибридов первого поколения не исчез, а был только подавлен и проявится во втором гибридном поколении.

 

Гипотеза чистоты гамет

 

Мендель предположил, что при образовании гибридов наследственные факторы не смешиваются, а сохраняются в неизменном виде. В гибриде присутствуют оба фактора — доминантный и рецессивный, но в виде признака проявляется доминантный наследственный фактор, рецессивный же подавляется. Связь между поколениями при половом раз множении осуществляется через половые клетки — га меты. Следовательно, необходимо допустить, что каждая гамета несет только один фактор из пары. Тогда при оплодотворении слияние двух гамет, каждая из которых несет рецессивный наследственный фактор, будет приводить к образованию организма с рецессивным признаком, проявляющимся фенотипически.

 

Слияние же гамет, каждая из которых несет доминантный фактор, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, будет приводить к развитию организма с доминантным признаком. Таким образом, появление во втором поколении рецессивного признака одного из родителей может быть только при двух условиях: 1) если у гибридов наследственные факторы сохраняются в неизменном виде; 2) если половые клетки содержат только один наследственный фактор из аллельной пары.

 

Расщепление потомства при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы генетически чисты, т. е. несут только один ген из аллельной пары. Гипотезу (теперь ее называют законом) чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один ген из аллельной пары.

 

Почему и как это происходит? Известно, что в каждой клетке организма имеется совершенно одинаковый диплоидный набор хромосом. Две гомологичные хромосомы содержат два одинаковых гена.

 

В процессе образования гамет у гибрида гомологичные хромосомы во время I мейотического деления также попадают в разные клетки.

 

По данной аллельной паре образуются два сорта гамет. При оплодотворении гаметы, несущие одинаковые или разные аллели, случайно встречаются друг с другом. В силу статистической вгроятности при достаточно большом количестве гамет в потомстве 25 % генотипов будут гомозиготными доминантными, 50 % — ге терозиготными, 25 % — гомозиготными рецессивными, т. е. устанавливается отношение 1АА:2Аа:1аа.

 

Соответственно по фенотипу потомство второго поколения при моногибридном скрещивании распределяется в отношении 3:1 (3Д особей с доминантным признаком, 'Д особей с рецессивным).

 

 

Таким образом, при моногибридном скрещивании цитологическая основа расщепления потомства — расхождение гомологичных хромосом и ооразование гаплоидных половых клеток в мейозе.

 

Закон независимого комбинирования, или третий закон Менделя. Изучение Менделем наследозания одной пары аллелей дало возможность установить ояд важных генетических закономерностей: явление доминирования, неизменность рецессивных аллелей у гибридов, расщепление потомства гибридов в отношении 3:1, а также предположить, что гаметы генетически чисты, т. е. содержат только один ген из аллельной пары. Однако организмы различаются по многим генам. Установить закономерности наследования двух пар альтернативных признаков и более можно путем дигибрмдного или полигибридного скрещивания.

 

Для дигибридного скрещивания Мендель взял гомозиготные растения гороха, отличающиеся по двум генам — окраски семян (желтые, зеленые) и формы семян (гладкие, морщинистые). Доминантные признаки — желтая окраска (А) и гладкая форма (В) семян. Каждое растение образует один сорт гамет по изучаемым аллелям:

 

При образовании гамет у гибрида из каждой пары аллельных генов в гамету попадает только один, при этом вследствие случайности расхождения отцовских и материнских хромосом в I делении мейоза ген А может попасть в одну гамету с геном В или с геном Ь. Точно так же ген а может оказаться в одной гамете с геном В или с геном Ь. Поэтому у гибрида образуются четыре типа гамет: АВ, Ав, аВ, ав. Во время оплодотворения каждая из четырех типов гамет одного организма случайно встречается с любой из гамет другого организма.

 

Все возможные сочетания мужских и женских гамет можно легко установить с помощью решегки Пеннета, в которой по горизонтали выписываются гаметы одного родителя, по вертикали — гаметы другого родителя. В квадратики вносятся генотипы зигот, образующиеся при слиянии гамет ().

 

Легко подсчитать, что по фенотипу потомство делится на 4 группы: 9 желтых гладких, 3 желтых морщинистых, 3 зеленых гладких, 1 желтая морщинистая. Если учитывать результаты расщепления по каждой паре признаков в отдельности, то получится, что отношение числа желтых семян к числу зеленых и отношение гладких семян к морщинистым для каждой пары равно 3:1. Таким образом, при дигибридном скрещивании каждая пара признаков при расщеплении в потомстве ведет себя так же, как при моногибридном скрещивании, т. е. независимо от другой пары признаков.

 

При оплодотворении гаметы соединяются по правилам случайных сочетаний, но с равной вероятностью для каждой. В образующихся зиготах возникают различные комбинации генов.

 

Независимое распределение генов в потомстве и возникновение различных комбинаций этих генов при дигибридном скрещивании возможно лишь в том случае, если пары аллельных генов расположены в разных парах гомологичных хромосом

 

 

К содержанию книги: Мамонтов. Биология, пособие

 

Смотрите также:

 

ГЕНЕТИКА — наука о наследственности и изменчивости...

ГЕНЕТИКА. — наука о наследственности и изменчивости организмов.

 

генетика - онтогенез - гены - ДНК  генетика изучает наследственность и изменчивость

Генетика изучает наследственность и изменчивость. Наследственность - это свойственная всем организмам