Энрико Ферми - ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ. Нейтронная физика

 

Сергей Капица. Физика и физики 20 века

 

 

Энрико Ферми - ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ

 

(1901–1954)
 

Энрико Ферми родился в Риме в семье служащего. Он окончил Пизанский университет и затем продолжил образование, полученное в значительной степени путем самостоятельных занятий, в Геттингене у Борна и в Лейдене у Эренфеста. С  1926 г. Ферми – профессор университета в Риме. Там в течение 12 лет он создал итальянскую школу современной физики; к этому времени относятся его теоретические работы по приложению квантовой механики к разнообразным явлениям атомной, молекулярной и ядерной физики. Мысль Паули о нейтрино привела в работах Ферми к созданию теории {5‑распада.

 

После открытия нейтрона Чадвиком и искусственной радиоактивности Жолио Кюри и Ирэн Кюри Ферми вместе со своими учениками занялся изучением этих явлений, где им были достигнуты замечательные результаты, увенчанные в 1938 г. Нобелевской премией. Отправившись вместе с семьей в Стокгольм получить Нобелевскую премию, Ферми решил не возвращаться в Италию, где фашистский режим создал невыносимые условия для творческой работы. Ферми эмигрировал в СШД став профессором Колумбийского университета.

 

В 1938 г. Хан и Штрассман открыли деление урана, и уже через 4 года Ферми построил в Чикаго атомный реактор, в котором впервые происходила управляемая самоподдерживающаяся цепная ядерная реакция. Именно с этих работ начался атомный век – век атомной энергетики и ядерного оружия. Годы войны Ферми провел в секретных лабораториях Лос‑Аламоса, участвуя вместе с крупнейшими физиками мира в создании атомной бомбы.

 

Однако после 1945 г. Ферми оставил нейтронную физику, область, которую он по существу создал; он утверждал, что ученый должен менять область своих занятий. Ферми обратился к физике элементарных частиц – к исследованию мезонов на первых ускорителях частиц высокой энергии.

 

Ферми был замечательным лектором. Конспекты его лекций и ныне представляют большой интерес, свидетельствуя об исключительной ясности и точности его ума; его образные и прозрачные решения давали четкую картину сложных явлений, лишенную какой‑либо нарочитой общности или абстрактности. Его сильная и независимая личность привлекала многих, несмотря на сложный, а иногда, по мнению некоторых, малодоступный характер: недаром еще в Италии ученики называли его Папой – за непогрешимость и авторитет!

 

 

Мы приводим предисловие к одной из последних книг Ферми «Элементарные частицы» (1951).

 

 

ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ

 

Предисловие

 

Пожалуй, наиболее важной проблемой теоретической физики в течение последних двадцати лет было описание элементарных частиц и взаимодействия между ними. Теория излучения Дирака и последующее развитие квантовой электродинамики заложили основу современного понимания электромагнитного поля и связанных с ним частиц – фотонов. В частности, эта теория может объяснить процессы рождения фотонов при испускании света и процессы исчезновения фотонов при поглощении света. Полевые теории других элементарных частиц построены по образцу теории фотонов. В основу их положено предположение, что каждому сорту элементарных частиц соответствует поле, квантами которого эти частицы являются. Таким образом, кроме электромагнитного поля, вводится еще электронно‑позитронное поле, нуклонное поле, несколько типов мезонных нолей и т.д.

Уравнения Максвелла, описывающие макроскопическое поведение электромагнитного поля, хорошо и давно известны. Поэтому естественно думать, что именно эти уравнения нужно проквантовать, чтобы ностроить квантовую электродинамику. Это и было проделано с определенным успехом. За последние два или три года остающиеся трудности, связанные с бесконечным значением электромагнитной массы и так называемой поляризацией вакуума, были в значительной мере преодолены в работах Бете, Швингера, Томонага, Фейнмана и др. Эти работы смогли удовлетворительно объяснить лэмбовский сдвиг уровней в тонкой структуре атома водорода и аномальный магнитный момент электрона как результат взаимодействия с полем излучения.

После фотонов частицами, лучше всего известными из эксперимента и лучше других описываемыми теорией, являются электроны и позитроны. В полевой теории электронов и позитронов за уравнения электронно‑позитронного поля берутся релятивистские уравнения Дирака. Метод квантования в этом случае должен быть таким, чтобы удовлетворялся принцип Паули для электронов и позитронов, в отличие от фотонного поля, где приложима статистика Бозе – Эйнштейна.

Менее убедительными являются попытки описания полей, о которых мы имеем гораздо более скудные экспериментальные данные.

Протоны и нейтроны, которые, подобно электронам, подчиняются принципу* Паули и обладают спином 1/г, обычно также описываются уравнением Дирака. Однако такая трактовка выходит за рамки наших теперешних экспериментальных данных, так как до спх пор не найдено‑отрицательных протонов (аналогов позитронам). Не найдено также антинейтронов. Последняя предполагаемая частица является «двойником» нейтрона, подобно тому как позитрон является «двойником» электрона. Антинейтрон отличается от нейтрона тем, что его магнитный момент* направлен параллельно спиновому (а не антипараллельно, как у обычного нейтрона). Затруднения теории связаны также с тем, что, согласно‑теории Дирака, магнитный момент протона следует предполагать равным одному ядерному магнетону, а магнитный момент нейтрона – равным нулю. Тот факт, что нейтрон в действительности имеет момент, равный–1,9103, а протон – момент, равный +2,7896 ядерного магнетона, объясняется действием мезонного поля, окружающего нуклоны. Если это объяснение справедливо, мы должны прийти к выводу, что протон и нейтрон – гораздо более сложны, чем это выглядит, когда их описывают уравнением Дирака.

До сих пор мы говорили о частицах, основные свойства которых мы знаем довольно обстоятельно. Но есть и другие частицы, существование которых известно или подразумевается. О свойствах таких частиц в: некоторых случаях можно только высказать предположения.

Предположение о существовании нейтрино было сделано Паули, чтобы избежать нарушения закона сохранения энергии при |5‑распаде. Это – нейтральная частица. Масса нейтрино или равна нулю, или крайне мала (в энергетических единицах меньше нескольких кэв ). Сшш нейтрино считается равным 7г; магнитный момент или равен нулю,, или очень мал. В теории (3‑распада нейтрино обычно описывается уравнением Дирака, что дает два типа нейтрино (собственно нейтрино и антинейтрино), связанных друг с другом, подобно электрону и позитрону‑

Однако это не есть единственный возможный способ описания нейтрино. Другой способ описания, в котором нет антинейтрино, был предложен Майораной. Показано, что в приложении к распаду теория Майораны дает обычно те же результаты, что и теория Дирака. Исключение составляет рассмотренный недавно весьма маловероятный случай двойного Р‑распада. Теория p‑распада, основанная на гипотезе о существовании нейтрино, достигла некоторых успехов в объяснении общих свойств явления. В частности, удалось объяснить распределение по энергиям электронов распада. Но, с другой стороны, до сих пор не найдено вполне удовлетворительной формы этой теории. Вместо одной удовлетворительной теории Р‑распада имеется несколько теорий, не вполне приемлемых.

Многое было сделано в полевой теории мезонов, впервые выдвинутой Юкавой в попытке объяснить ядерные силы. Мезон Юкавы следует отож‑дэствить с л‑мезоном. ц‑Мезон, являющийся продуктом распада зт‑ме‑зона, слабо связан с нуклонами и поэтому не считается носителем ядерных сил. Теория Юкавы оказалась очень ценным ориентиром в экспериментальных исследованиях и, вероятно, содержит немало верных путей к будущей теории. В частности, мезонной теории мы частично обязаны открытием рождения мезонов при столкновениях быстрых нуклонов. С другой стороны, попытки математической формулировки мезонной теории имели весьма скромный успех. Часто бывает, что результаты, полученные в теории с помощью сложного математического аппарата, оказываются не лучше, чем прикидочная оценка порядка величины. Это неудовлетворительное положение будет, вероятно, исправлено только тогда, когда большее количество экспериментальных данных укажет нам путь к правильному пониманию.

Мы не пытаемся здесь обсуждать математический аппарат полевых теорий. Наша цель – проиллюстрировать на простых примерах полуко‑личественные методы, которые могут оказаться полезными при интерпретации экспериментов. В некоторых случаях более строгое математическое рассмотрение не приводит к более точным результатам, ибо нет еще совершенной теории. В других случаях качественные соображения, приведенные в книге, могут служить введением к более полному изучению проблемы.

 

Энрико Ферми

Энрико Ферми

 

К содержанию: Сергей Петрович Капица: Жизнь науки

 

Смотрите также:

 

Энрико Ферми. Жолио-Кюри. Искусственная радиоактивность.

 

Нейтрино. Радиоактивные элементы испускают альфа-лучи...

Осенью 1934 года Энрико Ферми вместе с Бруно Понтекорво и другими учениками опускал источник нейтронов

 

Ирен и Фредерик Жолио-Кюри , радиоактивные процессы

, измеренные при наличии достаточно большого числа атомов данного изотопа. Смотрите также: Энрико Ферми.

 

закон сдвига - радиоактивное превращение. К. Фаянс, Ф. Содди...

Энрико Ферми. Жолио-Кюри. Искусственная радиоактивность.

 

Модель атомов. альфа-частицами Э. Резерфорд открыл атомное...

Это было рождением идеи об атомном ядре и новой отрасли физики — ядерной физики. Энрико Ферми.

 

Ирен и Фредерик Жолио-Кюри, Открытие нейтрона - какую роль...

Энрико Ферми. Жолио-Кюри. Искусственная радиоактивность.