Матричный принцип систематики концентрации элементов на физико-химических барьерах

Вся электронная библиотека      Поиск по сайту

 

ПЕРЕЛЬМАН. БИОКОСНЫЕ СИСТЕМЫ

ОБЩИЕ ЧЕРТЫ БИОКОСНЫХ СИСТЕМ

 

Александр Ильич Перельман

 

Смотрите также:

 

Перельман - Геохимия ландшафта

 

Перельман - Круговорот атомов в геологии

 

Живое и биокосное вещество в биосфере

 

Биокосные системы. Формирование осадочных пород

 

Геология

геология

Основы геологии

 

Геолог Ферсман

 

Геохимия - химия земли

 

Гидрогеохимия. Химия воды

 

Минералогия

минералы

 

Почва и почвообразование

 

Почвоведение. Типы почв

почвы

 

Химия почвы

 

Круговорот атомов в природе

 

Книги Докучаева

докучаев

 

Происхождение жизни

 

Вернадский. Биосфера

биосфера

 

Биология

 

Эволюция биосферы

 

растения

 

Геоботаника

 

 Биографии геологов, почвоведов

Биографии почвоведов

 

Эволюция

 

Матричный принцип систематики концентрации элементов на физико-химических барьерах

 

Концентрация химических элементов на этих барьерах зависит, с одной стороны, от класса барьера, а с другой — от состава вод, поступающих к барьеру. На сочетании этих двух факторов и построена систематика типов концентрации элементов (табл. 6). В таблице отмечены элементы, легко мигрирующие в отдельных классах вод, а также «запрещенные ассоциации», миграция которых сильно затруднена или практически невозможна. Каждый тип концентрации обозначается двойным символом, включающим класс барьера и класс вод (например, А5, В1). Понятно, что на барьере концентрируются не все элементы, подвижны* в данном классе вод, а только некоторые из них. Они тоже указаны в таблице.

 

Кислородные и глеевые воды могут различаться по окислительно-восстановительным условиям, т. е. возможны слабоокислительные и резкоокислительные воды, слабоглеевые и резкоглеевые и т. д. Отсюда следует, что из слабоглеевых вод возможно осаждение элементов на глеевом барьере (с резкоглеевой средой). Эта комбинация и отмечена в табл. 6 {С5—СS). Из кислородных вод также возможны концентрации элементов на кислородном барьере (А1—А4).

 

Однако некоторые сочетания в природе не встречаются, как, например, El, Е2 (при встрече сильнокислых кислородных вод с кислым барьером элементы не концентрируются). Как видим, предлагаемая систематика построена по матричному принципу, который «организует мысль» и позволяет выделять новые типы концентраций, еще не установленные в природе, т. е. прогнозировать. В таблице выделено 86 типов концентраций элементов, однако некоторые из них пока не установлены. Пользуясь таблицей-матрицей, можно наметить условия их образования и сказать, где (в каких условиях) искать.

 

Рудные месторождения и геохимические аномалии образуются на барьерах. С каждым концентрации (от А1 до Н12) связано образование геохимических аномалий. Значительно реже на барьерах образуются месторождения полезных ископаемых, т. е. такие крупные концентрации, извлечение которых из недр оправдано экономически. Но из этого пе следует, что геохимические аномалии не представляют практического интереса — часто они являются хорошими поисковыми признаками месторождений.

 

В тех местах, где глеевая обстановка на коротком расстоянии сменяется окислительной кислородной, например в краевых зонах болот, в местах разгрузки глубинных глеевых вод по разломам возникает кислородный геохимический барьер (Л), на котором происходит окисление Fe2 + и Мп2+. В результате образуются плохо растворимые гидроокислы трехвалентного железа (Fe3+) и четырехвалентного марганца (Мп4+).

 

Как показали исследования Ф. В. Чухрова, при быстром окислении железа глеевых вод сначала образуется минерал-эфемер — ферригидрит 2,5Fe203«4,5H20, по кристаллической структуре сходный с гематитом. В процессе окисления важную роль играют особые железобактерии.

 

Тип А 6 встречается почти повсеместно в лесных ландшафтах влажного климата. Большое количество разлагающихся органических веществ приводит здесь к широкому распространению оглеения в почвах, илах, грунтовых водах. Кислые глеевые воды обогащены Fe2+, Мп2+, органическими кислотами, придающими воде цвет крепкого чая. Там, где такие воды выходят на земную поверхность, например у основания склона, возникает кислородный барьер, осаждаются гидроокислы железа и марганца в виде конкреций и пластов бурых железняков. Глеевые грунтовые воды нередко разгружаются на дне рек и озер, где также возникает кислородный барьер.

 

Геохимик Т. Т. Тайсаев показал, что в Бурятии вблизи месторождений полезных ископаемых гидроокислы железа нередко обогащены рудными элементами. Это объясняется тем, что гидроокислы железа являются коллоидными минералами и легко сорбируют из воды многие металлы. Поэтому, анализируя гидроокислы железа на участках кислородных барьеров, можно искать месторождения. Это особая разновидность геохимических методов поисков рудных месторождений.

 

Глубинные восходящие глеевые воды, поднимаясь по разлому в месте контакта с кислородными водами, встречают кислородный барьер, на котором также осаждаются гидроокислы железа и марганца, приводящие к развитию ожелезнения в зонах разломов (30).

 

Нейтральные и щелочные глеевые воды характерны для районов распространения пород и почв, содержащих СаС03, например для болотных вод лесостепи и черноземных степей. Здесь железо менее подвижно, чем в тайге, а марганец подвижен. Поэтому на кислородном барьере концентрируются преимущественно гидроокислы марганца, содержащие примесь железа (тип А7).

 

Тип _АН_ характерен для болот с содовыми водами. Типы А9—А12 возникают в местах разгрузки глубинных сероводородных вод— на контакте этих вод с кислородными подземными водами или с кислородом воздуха. Здесь особые бактерии окисляют сероводород до элементарной серы. Эти явления широко распространены на выходах сероводородных источников. В прошлые геологические эпохи в местах длительной разгрузки сероводородных вод возникали месторождения самородной серы, как, например, в Туркмении (Гаурдак, Серные Бугры), Ферганской долине (Шорсу). Образование сероводородных вод особенно энергично идет на участках нефтяных месторождений (углеводороды — пища для бактерий), где развиты гипсы — источник сульфатов. Поэтому именно к таким местам и приурочены серные месторождения (типы А11 и А12% 31).

 

В местах, где кислородные или глеевые воды встречают на пути своего движения сероводородную обстановку, или сульфиды, возникают сероводородные, или сульфидные барьеры (В). Образование сероводорода, как мы убедились, в основном связано с деятельностью бактерий, реже при этом имеют место химические реакции. Сероводородные (сульфидные) барьеры имеют большое практическое значение, так как на них образуются рудные тела некоторых месторождений меди, урана, селена и других элементов. Еще чаще встречаются геохимические аномалии этих элементов.

 

Если на возвышенности располагаются рудные тела, содержащие сульфиды железа, никеля, кобальта, меди и других металлов, то окисление этих руд приводит к образованию сернокислых грунтовых вод, обогащенных металлами. Двигаясь в сторону депрессий рельефа, такие воды встречают торфяное болото у подножия склона, где бактерии восстанавливают      с образованием H2S.

 

В результате в краевой зоне болота возникает сероводородный барьер, на котором концентрируются принесенные металлы. Так образуется геохимическая аномалия 57, оторванная от оруденения, которая служит важным поисковым признаком месторождений (32). Эти явления были изучены в районе медно-никелевых месторождений Кольского полуострова.

 

В зонах окисления сульфидных месторождений наблюдается и вертикальная миграция сернокислых растворов, которые, реагируя с первичными сульфидами, также дают сероводород:

MeS -f II2S04 —> MeS04 + H2S.

 

В результате в нижней части зоны окисления возникает сероводородный барьер, на котором осаждаются металлы, вынесенные из зоны окисления. Так образуются вторичные богатые сульфидные руды, местами представляющие главную ценность месторождения. В ряде случаев осаждение происходит и без участия сероводорода вследствие других процессов, но с обязательным участием сульфидов. Формирование этой зоны вторичного сульфидного обогащения связано, в частности, с обменными реакциями типа

CuS04 + MeS —> CuS-f-MeS04.

 

Большое значение приобретают и различные микрогальванические пары, т. е. электрохимические явления. Поэтому можно говорить о сульфидном барьере, частным случаем которого является и сероводородный барьер.

 

Во многих озерных, морских и океанических илах, а также в морских осадочных породах встречаются сульфиды железа (пирит) и реже других металлов. Это позволяет утверждать, что в илах существовал сероводородный барьер, на котором из слабощелочной, морской или иловой воды осаждались металлы (тип ВЗ, отчасти В7). Напомним, что особенно энергично эти процессы протекали в конце рифея в так называемую вендскую эпоху и в начале палеозоя — в кембрии, ордовике, силуре (080—410 млн. лет назад). Именно в это время во многих морях шло накопление илов, обогащенных сульфидами металлов.

 

Уран и его спутники — селен и молибден — осаждаются из инфиль- трующихся вод. В сходных условиях могут формироваться и концентрации типа В4, менее ясны типы В5—BS, они еще подлежат изучению.

 

Глеевые барьеры (С) возникают в местах встречи кислородных и сероводородных вод с глеевой средой. Они характерны для таежных, тундровых, степных и тропических болот, для глубоких водоносных горизонтов, но изучены пока слабо.

 

Исключительно распространены в биосфере щелочные барьеры (Д), которые возникают в местах повышения рН среды, например при смене сильнокислой обстановки на слабокислую или слабощелочной на сильнощелочную. Однако наиболее контрастны барьеры в местах перехода от кислой среды к щелочной.

 

Тин Д1 формируется, например, при окислении сульфидных руд, залегающих в известняках (33). Образующиеся при этом сернокислые растворы, несущие железо, медь, цинк и другие металлы, взаимодействуют с вмещающими карбонатпыми породами и усредняются. В результате повышения рН на щелочном барьере осаждаются гидроокислы и карбонаты металлов, как, например:

ZqS04 GaG03 ZnC03 4- CaS04

 

Поэтому зона окисления в таких местах богата вторичными карбонатами металлов.

Среди карбонатов особенно выделяются красивые зеленые и синие карбонаты меди — малахит и азурит. Замечательные малахиты Урала, украшающие Зимниб дворец, Исаакиевский собор и другие архитектурные памятники Ленинграда, — продукты осаждения меди на щелочных барьерах.

 

В районах влажного климата на контакте ультраосновных пород с известняками образуется аномалия типа Д2 (34). Разложение органических остатков в почвах приводит здесь к образованию кислых вод, в которых легко растворяются марганец, никель, кобальт, содержащиеся в ультраосновных породах (никель и кобальт образуют органические комплексы с органическими кислотами). На контакте с известняками возникает щелочной барьер, на котором осаждаются эти металлы.

 

Значительно менее распространены, или, во всяком случае, хуже изучены, кислые барьеры (Е). Они образуются при уменьшении рН, особенно при смене щелочной среды на кислую. В щелочных водах хорошо мигрируют анионогенные элементы, например кремний (SiO^"), селен (SeO|~), молибден (МоО|~), германий (GeO|~) и т. д. В местах понижения рН, особенно при резком уменьшении щелочности, они осаждаются из вод, приводя к окремнению пород, концентрации в них молибдена, германия и других элементов. Эти явления наблюдаются и в зоне окисления сульфидных руд в известняках, в которых возможен ток вод в сторону сульфидных руд. Гидрокарбонатные воды имеют слабощелочную реакцию и могут содержать повышенные количества кремнезема. Последний будет осаждаться при встрече щелочных вод с кислыми, т. е. на кислом барьере Е. В результате происходит формирование аномалий типа ЕЗ, окремнение известняков, характерное для многих зон окисления сульфидных руд. В этом случае геохимический барьер как бы работает на два фронта (в обе стороны): в сторону от руд это — щелочной барьер (Д1), а по направлению к рудам — кислый (ЕЗ). Такие барьеры называются двусторонними, для них характерны несовместимые ассоциации элементов, включающие, например, и катионогенные и анионогенные металлы (см. 33).

 

К проявлению кислого барьера относятся некоторые окремнелые стволы деревьев в древних речных песках. Автор паблюдал подобные окаменелые стволы в пермских песчаниках Оренбургской области. В реку, протекавшую на этом месте около 250 млн. лет назад, во время бурных паводков, вероятно, падали стволы деревьев. «Захороненные» в речных песках, они длительное время омывались щелочными водами, обогащенными кремнеземом. Микробиологическое разложение «захороненной» древесины приводило к выделению большого количества С02, в связи с чем на участке гниения дерева вода подкислялась. Там возникал локальный кислый барьер, на котором и осаждался Si02, постепенно клеточка за клеточкой замещавший древесину. Подобные метасоматические процессы могли протекать не только в речной долине и грунтовых водах, но и в глубоких пластовых водах через длительный промежуток времени после захоронения древесины.

 

Испарительные барьеры (F) — это такие участки биосферы, где в результате испарения поверхностных или подземных вод происходит отложение растворимых солей, преимущественно хлоридов и сульфатов и значительно реже карбонатов, нитратов, боратов, йодатов, хроматов и т. д. О проявлениях испарительных барьеров уже говорилось: к ним относятся и засоленные почвы (солончаки и солонцы), и соляные озера. Обнаружено также засоление пород, обязанное испарению глубокозалегаю- щих грунтовых вод. Во всех случаях мы сталкиваемся с уже известной закономерностью: геологические и географические формы проявления геохимического барьера весьма разнообразны (почвы, озера, горные породы), но их геохимическая сущность одинакова — накопление наиболее подвижных элементов, образующих растворимые соли.

 

В геологических науках много внимания уделяется соляным озерам, лиманам, соляным отложениям. В биосфере засоление развивается уже более 500 млн. лет; его наследие в виде залежей ископаемых солей играет важную роль в жизни человечества (пищевая соль, химическое сырье и т. д.). Сельскохозяйственное освоение степей и пустынь потребовало глубокого изучения солончаков и солонцов, начало которому, как мы убедились, положили исследования К. К. Гедройца. Ныне это крупный раздел почвоведения.

 

Всe процессы миграции и концентрации солей А. Е. Ферсман предложил именовать галогенезом. Своеоб разные аспекты изучения галогенеза, новые разновид ности испарительных барьеров выявились в связи с гео химическими поисками рудных месторождений. С этой целью потребовалось изучать засоление в низкогорных каменистых степях и пустынях (ранее оно не привлекало большого внимания), поведение редких элементов при за солении, роль разломов земной коры в процессах засоле ния.

 

Разлом это крупная трещина (или система трещин) в скальных породах, прослеживающаяся на большую глубину, местами на десятки и, возможно, сотни километров. Разломы специально изучает геологическая наука тектоника, но интересуются ими многие представители наук о Земле — и геологи и географы. По разломам часто происходит поднятие напорных подземных вод к поверхности. В степях и пустынях в таких местах нередко образуется испарительный барьер, в связи с чем сама зона разлома прослеживается в виде линии или цепочки солончаков, солонцов, соляных озер, своеобразной растительности, состоящей из сочных «солянок». Нередко такое разломное засоление, как его назвал автор, простирается на многие десятки и даже сотни километров. В этом случае испарительный барьер имеет важное индикационное значение. Прежде всего, выцветы солей помогают геологу при съемке прослеживать разломы, наносить их на карту. Интересуют такие солончаки и гидрогеолога. Хорошо известно, что в сухих степях и пустынях часто отсутствуют реки и пресные озера и главную надежду в поисках питьевой воды возлагают на подземные воды. А многие разломы водоносны. Поэтому нередко достаточно пробурить скважину на участке разлома, чтобы получить хороший источник водоснабжения. Признаком разлома служит испарительный барьер — линейная зона засоления. Но, позвольте, может сказать читатель, для водоснабжения необходима пресная вода, а солончаки указывают на соленую воду. Это верно, но многие разломы содержат хорошую пресную воду, и только вблизи самой поверхности она осолоняется. Следовательно, если воду откачивать с некоторой глубины, то она будет вполне пригодна для питья.

 

Конечно, не одни солончаки являются признаками разломов; у геологов имеется много других критериев, но и испарительный барьер может принести пользу.

 

Теперь посмотрим, как матричный принцип позволяет выделить различные виды испарительных барьеров.

Концентрация типа F1 образуется в результате испарения сернокислых вод. Напомним, что серная кислота в биосфере образуется преимущественно при окислении пирита, например, в зоне окисления сульфидных месторождений. Если сульфидные рудные выходы окисляются в степях или пустынях, то сернокислые грунтовые воды нередко испаряются в понижениях рельефа, где образуются сернокислые солончаки, обогащенные растворимыми солями меди, цинка и других металлов. Так появляется геохимическая аномалия F1, ландшафт в целом относится к сернокислому классу.

 

Наиболее широко распространены в степях и пустынях аномалии типа F3 и F11. К ним относятся многие солончаки Средней Азии, Казахстана и других аридных районов нашей страны. При геохимических поисках в Казахстане нередко на участках солончаков обнаруживали повышенные количества молибдена, стронция, цинка и других рудных элементов. Возник вопрос: как относиться к таким геохимическим аномалиям? В частности, являются ли они указателем на близкозалегающие рудные месторождения, например молибденовые? Конечно, каждый геолог стремится открыть месторождение, и на аномалии в солончаках первое время смотрели с надеждой. К сожалению, вскоре пришло разочарование: было установлено, что некоторые рудные элементы, и в частности молибден, обладают способностью к испарительной концентрации, т. е. ведут себя аналогично натрию, хлору, сере, накопление которых при засолении было установлено уже давно. Поэтому многие геохимические аномалии молибдена и других металлов, обнаруживаемые на солончаках, являются безрудными и должны «отбраковываться». Так геохимия помогла решить важный практический вопрос — отделить рудные аномалии от безрудных. (Конечно, в степях и пустынях вблизи молибденовых месторождений могут образоваться солончаки с повышенным содержанием молибдена, и такая аномалия будет рудной, т. е. явится поисковым признаком на руду. Однако подобные аномалии отличаются рядом особен ностей, и их можно выделить среди большого числа безрудных аномалий.)

 

На участках нефтяных залежей также нередко наблюдаются глубокие разломы, по которым глубинные «нефтяные воды» поступают к поверхности. В геохимическом отношении эти воды очень своеобразны — часто обогащены йодом и бромом, органическими веществами, содержат мало сульфатов, которые съедены бактериями. Поэтому и в солончаках над нефтяными залежами мало гипса, сравнительно много йода, органических веществ нефтяного происхождения (нафтеновые кислоты и пр.). Аномалии относятся к типам F7, F8, F11 и F12. Отсюда естествен вывод, что геохимическое изучение солончаков в степях и пустынях может помочь искать нефтяные залежи.

 

Такой почвенно-геохимический метод поисков нефти был разработан в 50-х годах советским почвоведом В. А. Ковдой. Например, исследования в районе месторождения Нефтечала показали, что в солончаках над нефтяной залежью по сравнению с другими солончаками преобладают хлориды, мало гипса, почва в два раза богаче йодом и т. д. Дальнейшее совершенствование этого метода и его практическое применение весьма актуальны, особенно в связи с большим объемом поисковых работ в Средней Азии и других аридных районах.

 

Особый характер приобретают испарительные барьеры в степях и пустынях с действующими вулканами или там, где вулканизм развивался в недавние геологические времена — четвертичном или неогеновом периодах (приблизительно до 25 млн. лет назад, что составляет менее 1% всего периода геологической истории). В таких районах местами распространены глубинные щелочные горячие воды, содержащие повышенные количества бора, лития, мышьяка, вольфрама и других ценных элементов. В местах испарения таких вод солончаки обогащены многими рудными элементами; образуются целые промышленные месторождения. Особую славу в этом отношении приобрел солончак (соленое озеро) Сёрлз в Калифорнии (США), рассолы которого содержат литий, бор, калий, бром, вольфрам, мышьяк, фтор, сурьму и другие редкие элементы. Эта аномалия относится к типу F12.

 

 

 

К содержанию книги: Биокосные системы Земли

 

 

Последние добавления:

 

БИОЛОГИЯ ПОЧВ

 

Вильямс. Травопольная система земледелия

 

История русского почвоведения

 

Качинский - Жизнь и свойства почвы

 

Вернадский - ЖИВОЕ ВЕЩЕСТВО