>>>

>>>

 

.


: . . .

 

 

 

1. Bresler, ., Reinforced Concrete Engineering, New York: Wiley-Inter-science (1974).

2. Pressler, E. E., Brunauer, S., Kantro, D. L. and Weise, . ., Determination of the Free Calcium Hydroxide Contents of Hydrated Portland Cements and Calcium Silicates, Anal Chetn., 55:877882(1961).

3. Lehmann, H., Locher, F. W. and Prussog, D., Quantitative Bestimmung des Calcium Hydroxide in Hydratisi-erten Zementen, Ton-Ztg., 94: 230235 (1970).

4. Ramachandran, V. S., Differential Thermal Method of Estimating Calcium Nydroxide in Calcium Silicate and Cement Pastes, Cent. Concr. Res. 9: 677684 (1979).

5. Midgley, H. Q., The Determination of Calcium Hydroxide in Set Portland Cements, Cera. Concr. Res., 9: 7783 (1979).

6. Taylor, H. F. W., J. End. Mod. Materials, Sci. & Eng., 3: 429449 (1981).

7. Feldman, R. F. and Ramachandran, V. S., Differentiation of Interlayer and Absorbed Water in Hydrated Portland Cement of Thermal Analysis, Cera. Concr. Res.. 1: 607620 (1971).

8. Feldman, R. F. and Ramachandran, V. S., A Study of the State of Water and Stoichiometry of Bottle Hydrated Ca3Si06, Cera Concr. Res., 4: 155166 (1974).

9. Ramachandran, V. S. and Sereda, P. J., Application of Hedvall Effect in Cement Chemistry, Nature, 233: 134135 (1971).

10. Feldman, R. F. and Ramachandran, V. S., Character of Hydration of 3CaO-Al203J. Amer. Cer. Soc, 49: 268273 (1966).

11. Ramachandran, V. S. and Feldman, R. F., Significance of Low Water / Solid Ratio and Temperature on the Physico-Mechanica) Characteristics of Hydrates of Tricalcium Alumi-nate, J. App. Chem. Biotechnol., 23: 625633 (1973).

12. Ramachandran, V. S. and Beaudoin, J. J., Significance of Water / Solid Ratio and Temperature on the Physico-Mechanical Characteristics of Hydrating 4CaO.Al203-Fe203, J. Mat. Sci., 11: 18931910 (1976).

13. Young, J. F., Hydration of Portland Cement, J. Edn. Mod. Mat. Sci. Engg., 3: 404428 (1981).

14. Ramachandran, V. S. and Beaudoin J. J., Hydration of CAF-\-Gypsum: Study of Various Factors, Proc. \7 Intern. Cong. Cements, Paris, 2530 (1980).

15. Mascolo, Q. and Ramachandran, V. S., Hydration and Strength Characteristics of Synthetic A1-, Mg- and Fe-Alites, Mats. & Constrn. 8: 373376 (1975).

16. Raffle, J. F., The Physics.and Chemistry of Cements and Concretes, Sci. Prog., Oxf., 64: 593616 (1977).

17. Ramachandran, V. S., Applications of Differential Thermal Analysis in Cement Chemistry, New York: Chemical Publishing Co. (1969).

18. Hansen, . , Radjy, F. and Sellevold, E. J.,Cement Paste and Concrete, Annual Rev. Mat. Sci., 3: 233268 (1973).

19. Taylor, H. F. W., The Chemistry of Cements, Royal Inst. Chem., Series 2, pp 27 (1966).

20. Stein, H. N. and Stevels, J., Influence of Silica on Hydration of 3CaO-Si02 J. App. Chem., 14: 338 346 (1964).

21. Tadros, M. E., Skalny, J. and Kalyoncu, R., Early Hydration of C3S, J. Am. Cer. Soc, 59: 344347 (1976).

22. Maycock, J. N., Skalny, J. and . Kalyoncu, R., Crystal Defects and Hydration: I Influence of Lattice Defects, Cem. Concr. Res., 4: 835847 (1974).

23. Fierens, P. and Verhaegen, J. P., The Effect of Water on Pure and Doped Tricalcium Silicate Using the Techniques of Absorboluminescence, Cem. Concr. Res., 5: 233238 (1975).

24. Pratt, P. L. and Jennings, H. M., The Microchemistry and Microstructure of Portland Cement, Ann. Rev. Mat. Sci., 11: 123149 (1981).

25. Tadros, M. E., Jackson, W. Y.-and Skalny, J., Study of Dissolution and Electrokinetic Behavior of Tricalcium Aluminate, Colld. Interface, Set., 4: 211223 (1976).

26. Feldman, R. F. and Ramachandran, V. S., The influence of CaS04-2H20 upon the hydration character of 3CaO-Al203, Mag. Concr. Res., 18: 185196 (1967).

27. Neville, A. M., Properties of Concrete, London: Pitman Publishing Co. (1981).

28. Vollick, A., Uniformity and Workability, ASTM STP 169A, 102 115 (1966).

29. Ramachandran, V. S., Feldman, R. F. and Beaudoin, J. J., Concrete Scince, A Treatise on Current Research, Heyden & Son Ltd., UK, pp 427 (1981).

30. Qrattan-Bellew, P. E., Quinn, E. Q. and Sereda, P. J., Reliability of scanning electron microscopy information, Cera. Concr. Res., 8: 333342 (1978).

31. Diamond, S., Cement paste microstructure An overview at several levels in hydraulic cement pastes Their structure and properties. Conference. University of Sheffield, April 1976, PP

32. Soroka, I. and Sereda, P. J.,

The structure of cement stone and the use of compacts as structural models. Proc. Fifth Int. Symp. Chem. of Cement, Part III, Vol. Ill, 6773, Tokyo (1968).

33. Feldman, R. F., Factors affecting the Youngs modulus-porosity relation of hydrated portland cement compacts. Cera. Concr. Res., 2: 375 386 (1972).

34. Feldman, R. F., Density and porosity studies of hydrated portland cement. Cement Technology, 3: 3 11 (1972).

35. Parrott, L. J., Hansen, W. and Berger, R. L. Effect of first drying upon the pore structure of hydrated aiite paste. Cera. Concr. Res., 10: 647655 (1980).

36. Day R. L., Reactions between methanol and portand cement paste. Cera. Concr. Res., 11: 341349 (1981).

37. Harris, D. H. C, Windsor, G. and Lawrence, D., Free and bound water in cement pastes. Mag. Concr. Res., 26: (87)6572(1974).

38. Auskern, A. and Horn, W., Capillary porosity in hardened cement paste. ASTM J. Test. Eval., 1: 7479 (1973).

39. Beaudoin, J. J., Porosity

measurements of some hydrated cementi-

tious systems by high pressure mercury-

intrusion-microstructur a 1 limitations.

Cera. Concr. Res. 9: 771781 (1979).

40. Young, J. F., Capillary porosity

in hydrated tricalcium silicate pastes.

J. Powder Technol., 9: 173179 (1974).

41. Cranston, R. W. and Inkley, F. A., The determination of pore structures from nitrogen adsorption isotherms. Adv. Catal. 9: 143154 (1957).

42. Dollimore, D. and Heal, Q. R., An improved method for the calculation of pore size distribution from adsorption data. /. Appl. Chem., 14: 109114 (1964).

43. Kadlec, O. and Dubinin, M. M., Comments on the limits of applicability of the mechanism of capillary condensation. /. Colloid, and Interface Sci., 31: 479489 (1969).

44. Collepardi,. M., Pore structure of hydrated tricalcium silicate. Proc. RILEM/IUPAC Int. Symp. Pore Structure and Properties of Materials, Prague, Vol. I, pp. 2549 (1973).

45. Mikhail, R. Sh. and Selun, S. A., Adsorption of organic vapors in relation to the pore structure of hardened portland cement pastes. Symposium on structure of portland cement paste and concrete. Special Report 90, HRB: 123134 (1966).

46. Litvan, Q. Q., Variability of the nitrogen surface area of hydrated cement paste. Cem. Concr. Res. 6: 139 144 (1976).

47. Feldman, R. F. Unpublished work.

48. Tomes, L. A., Hant, . . and Blaine, R. L., Some factors affecting the surface area of hydrated portland cement as determined by water-vapour and nitpogen adsorption. /. of Res., Nat. Bur. Stand. 59: 357364 (1957).

49. Winslow, D. N. and Diamond, S., Specific surface of hardened portland cement paste as determined by small-angle x-ray scattering. /. Am. Ceram. Soc, 57: 193197 (1974).

50. Feldman, R. F., Application of helium inflow technique for measuring surface area and hydraulic radius of hydrated portland cement. Cem. Concr. Res., 10: 657664 (1980).

-= - 51. Sereda, P. J., Feldman, R. F. and Swenson, E. G., Effect of sorbed water on some mechanical properties of hydrated portland cement pastes and compacts. HRB Special Report 90, Washington, 5873 (1966).

52. Ryshkewitch, E., Compression

strength of porous sintered alumina and

zirconia. J. Amer. Ceram. Soc, 36: 65

68 (1953).

53. Schiller, . ., Strength of porous materials. Cem. Concr. Res., 1: 419422 (1971).

54. Feldman, R. F. and Beaudoin J. J., Microstructure and strength of hydrated cement. Proc. Sixth Int. Congr. Chem. of Cement, Moscow, Vol. II, Book 1: 288293 (1974).

55. Roy, D. M., Qouda, Q. R. and Bobrowsky, A., Very high strength cement pastes prepared by hot pressing and other high pressure techniques. Cem. Concr. Res., 2: 349366 (1972).

56. Beaudoin, J. J. and Feldman, R. F., A study of mechanical properties of autoclaved calcium silicate systems. Cem. Concr. Res., 5: 103118 (1975).

57. Nyame, . - and Distort,

J. M., Relationships between permeability

and pore structure of hardened cement

paste. Magazine of Concr. Res., 33:

139146 (1981).

58. Verbeck, Q. and Helmuth, R. A.,

Structures and physical properties of

cement pastes. Proc. Fifth Int. Symp.

Chem. of Cement, Tokyo, Vol. Ill, 1

31 (1968).

59. Feldman, R. F. and Swenson, E. G., Volume change on first drying of. hydrated portland cement with and without admixtures. Cem. Concr. Res., 5: 2535 (1975).

60. Powers, . , Mechanism of shrinkage and reversible creep of hardened cement paste. Intern. Conf. on the Structure of Concrete, London (1965). Imperial College. Cem. and Concr. Assoc: 319344 (1965).

61. Bazant, Z. P., Constitutive

equation for concrete creep and shrin

kage based on thermodynamics of mul

tiphase systems. Materiaux et Construc

tions, 3: 336 (1970).

62. Hannant, D. J., The mechanism

of creep in concrete. Materials and

Structures, 1: 403410 (1968).

63. Wittmann, F., Einfluss des Feuchtigkeitgelialtes auf des Kriechen des Zementsteines. Rheologica Acta 9: 282287 (1970).

64. Gamble, B. R. and Illston, J. M., Rate deformation of cement paste and concrete during regimes of variable stress, moisture content and temperature. Proc. Conf. held at Tapton Hall, Hydraulic Cement Pastes, Their Structure and Properties: 297311 (1976).

65. Day, R. L. Ph. D. Thesis, Univ. of Calgary, Basic Rate Theory of Creep as Applied to Cement Paste and Concrete. (1979).

66. Feldman, R. F., Mechanism of creep of hydrated portland cement paste. Cem. Concr. Res. 2: 521540d (1972).

67. Hope, . . and Brown, N. H., A model for creep of concrete. Cem. Concr. Res. 5: 577586 (1975).

68. Feldman, R. F. and Beaudoin, J. J., Effect of applied stress on the helium inflow characteristics of hydrated portland cement. To be published by Cem. Concr. Res.

69. Feldman, R. F. and Sereda, R. J., The new model for hydrated portland cement and its practical implications. Eng. J., 53: 5357 (1970).

70. Vivian, H. E., An Epilogue. Symp. Alkali-Aggregate Reaction-Preventive Measures, Reykjavik: 269270 (1975).

71. Diamond, S., Chemical Reactions other than carbonate reactions. Chapter 40, Significance of tests and properties of concrete and concrete-making materials. ASTM Special Tech. Publn. 169B: 708721 (1978).

72. Hansen, W. C, Studies relating to the mechanism by which alkali-aggregate reaction produces expansion in concrete. Proc. Amer. .Concr. Inst. 40: 213227 (1944).

73. Swenson, E. G. A reactive aggregate undetected bu ASTM tests. Bull. No. 57, Amer, Soc. Testing Mat.: 48 51 (1957).

74. Swenson, E. G. and Gillott,

J. E., Alkali carbonate rock reaction.

Cement Aggregate Reactions, Trans.

Res. Board Rec. No 525: 2140 (1974).

75. Swenson, E. G.and Gillott, J. E., Alkali reactivity of dolomitic limestone aggregate. Mag. Concr. Res. 19: 95 104 (1967).

76. Cillott, J. E., Practical implications of the mechanisms of alkali-aggregate reactions. Symp. Alkali-Aggregate Reaction, Reykjavik: 213 230 (1975).

77. Powers, . and Steinous, H. H., An interpretation of published researches on the alkali-aggregate reaction. Amer. Concr. Inst. J. Proc. 51: 497516; 785812 (1955).

78. McCoy, W. J. and Caldwell, A. G., New approach to inhibiting alkali-aggregate reaction. /. Amer. Concr. Inst. 47: 693706 (1951).

79. ., .

// . 1978. 12. .

12-14.

80. Mehta, . . Effect of che

mical additions on the alkali-silica

expansion. Proc. 4th Cong, on Effects

of Alkalis in Cement and Concrete.

Purdue Univ., USA: 299234 (1979).

81. Hansen, W. C, Inhibiting

alkali-aggregate reaction with barium

salts. /. Amer. Cone. Inst. 56: 881

883 (1960).

82. Everett, D. H., The thermody

namics of frost damage to porous

solids. Trans. Faraday Soc. 57: 1541 1551 (1961).

83. Litvan G. G., Freezing of water in hybrated cement paste. RILEM Int. Symp. Durability of Concrete: B153 B160 (1969).

84. Feldman. R. F., Length change-adsorption relations for the water-porous glass system to 40 C. Can. J. Chem. 48: 287297 (1979).

85. Powers, . and Helmuth, R. A. Theory of volume changes in hardened portland cement paste during freezing. Proc. of the Highway Res. Board, 32: 285297 (1953).

 

86. Litvan G. G., Phase Transition of Adsorbates: VI. Effect of deicing agents on the freezing of cement, paste. J. Amer. Cer. Soc. 58: 2630 (1975).

87. Macinnes, C. and Lau, E. C, Maximum aggregate size effect on frost resistance of concrete. Amer. Concr. Inst. J. Proc. 68: 144149 (1971).

88. Powers, T. C, Basic considerations pertaining to freezing and thawing tests. Proc. ASTM 55: 11321155(1955).

89. Litvan, G. G., Macinnes, C. and Grattan-Bellew, P. E. Cooperative test program for precast concrete paving elements. Proc. of the First Intern. Conf. on Durability of Building Materials and Components, ASTM STP 691: 560573 (1978).

90. Fagerlund, G., The international

cooperative test of the critical degree of

saturation method of assessing the

freeze / thaw resistance of concrete.

Materiaux et constructions, Wr 231

253 (1977).

91. Sommer,, H., A. new method

of making concrete resistant to frost and

de-icing salts. Zement und Beton, 4:

124129 (1977).

92. Litvan, G. G., Particulate admixture for enhanced freeze-thaw resistance of concrete. Cem. Concr. Res., 8: 5360 (1978).

93. Biczok, I., Concrete corrosion concrete protection. 8th Ed. Akadamiai Kiado, Budapest, pp 545 (1972).

94. Regourd, M., Physico-chemical

studies of cement pastes, mortars and

concretes exposed to seawater. ACI SP-

65: 6382 (1980).

 

: " "

 

:

 

- ( )

.

-