ПРОЕКТИРОВАНИЕ ЗДАНИЙ. Членение зданий на деформационные отсеки, решения деформационных швов

  Вся электронная библиотека >>>

 Архитектурные конструкции >>

 

Архитектура

Архитектурные конструкции


Раздел: Быт. Хозяйство. Строительство. Техника

 

Глава 2. Общие принципы проектирования несущих и ограждающих конструкций зданий

 

 

Членение зданий на  деформационные отсеки, решения деформационных швов

 

Деформацией называют изменение формы или размеров материального тела (или его части) под действием каких-либо физических факторов (внешних сил, нагревания и охлаждения, изменение влажности и от других воздействий). Некоторые виды деформаций названы в соответствии с наименованиями воздействующих на тело факторов: температурные, усадочные (усадка — сокращение размеров материального тела при потере влаги его материалом); осадочные (осадка — оседание фундамента при уплотнении грунта под ним) и др. Если под материальным телом понимать отдельные конструкции или даже конструктивную систему в целом, то подобные деформации при определенных условиях могут служить причиной нарушений их несущей способности или потери ими эксплуатационных качеств.

Так, наружные стены зданий и бесчердачные покрытия можно рассматривать как единые жесткие плиты, которые, находясь в изменяющихся температурных условиях наружного воздуха, стремятся изменить свои размеры и притом не одинаково по сечению плит: их поверхности, обращенные в сторону помещений, находятся в стационарных температурных условиях и не претерпевают температурных деформаций. В таких же условиях находятся и конструкции несущего остова, примыкающие к плитам покрытий. Эти конструкции препятствуют стремлению наружных поверхностей плит изменить свои размеры, что приводит к возникновению сложного напряженного состояния: во всех конструктивных элементах возникают огромные внутренние усилия, следствием которых могут быть трещины и другие дефекты.

Размеры температурных отсеков зависят от типов и материалов несущего остова. Длина отсека в каркасных зданиях из железобетона обычно не превышает 60...72 м; в каркасных одноэтажных зданиях из металла эта длина может быть больше в 2...2,5 раза. В многоэтажных зданиях с каменным несущим остовом размеры отсеков принимаются в пределах 40... 100 м (СНиП П-22—81 «Каменные и армо-каменные конструкции»); в таких .же зданиях из крупных панелей этот размер равен 75... 150 м (ВСН 32—77 Гос-гражданстроя СССР «Инструкция по проектированию конструкций панельных жилых зданий»).

 

 

В приведенных цифрах низшие значения относятся к наиболее суровым климатическим условиям (большим значением At, °С) и к низшим классам строительных материалов

При усадке материалов (в монолитных конструкциях, при каменной кладке стен) необходимо учитывать усадочные деформации, что также вызывает необходимость разбивать здание на отсеки. Размеры таких отсеков во многих случаях совпадают с размерами температурных, в связи с чем их чаще всего объединяют, называя в таких случаях и отсеки и швы температурно-усадочными.

Совершенно иной механизм деформаций при неравномерной осадке оснований здания: они направлены по вертикали и могут вызвать перекосы, сдвиг и т. п. Такие деформаци возможны при значительной разнице в нагрузках на вертикальные опоры; при несовпадении конструктивных систем и т. п. Первый из этих случаев может иметь место, например, при значительной разнице в высоте (порядка 10 м и более) сопрягаемых частей здания; второй — при развороте одного из сопрягаемых объемов (там же, тип «Б» слева). Возможны и более сложные случаи.

Принципиальная разница в устройстве осадочного шва в отличие от температурного состоит в разрезке всех конструкций здания, включая фундаменты. Необходимо развивать подошву каждого из сопрягаемых фундаментов. Это требует места, в связи с чем вертикальные несущие конструкции раздвигаются на большее расстояние, чем в месте температурного шва; это расстояние определяется расчетом, так как несущая способность основания и величины нагрузок могут существенно различаться.

Обычно при устройстве осадочных швов температурные швы с ними совмещаются. В этом случае шов равно как и отсек, называют температурно-осадочным. Это не исключает случаев, когда в пределах отсека, разделенного такими швами, требуются еще и дополнительные температурные швы.

Часто к рассмотренным видам швов и отсеков применяют более обобщенные термины: деформационные швы и деформационные отсеки. Этот термин распространяют и на антисейсмические швы и другие, рассмотренные в разд. VI.

Деформационные швы в ограждающих конструкциях решаются сравнительно однотипно, чего нельзя сказать о конструкциях несущего остова. Наиболее просты конструктивные решения температурных швов. В одноэтажных зданиях это достигается устройством парных колонн; об этом подробнее см. разд. Ш.

В многоэтажных зданиях принимается во внимание конструктивная система несущего остова. В случае поперечных несущих стен шов устраивают на сопряженных парных стенах; при этом типоразмеры плит перекрытий и навесных панелей сохраняются. При продольных несущих стенах конструкции «разрезаются» вдоль одной из поверхностей поперечной стены.

В многоэтажных каркасных зданиях обычно применяют парные колонны, расстояние между которыми с заполняется угловыми элементами навесных панелей или специально изготовленной вставкой.

Также со вставкой решаются осадочные швы. Величина шва устанавливается расчетом, но она не должна быть меньше 2 см. В шве покрытия устраивают компенсаторы из оцинкованной стали, между которыми располагаются термовкладыши. При возможности аналогично решают и температурный шов стены, однако установка компенсаторов сложна. Обычно на всю толщину стены укладывают термовкладыш в обертке из рубероида. В осадочных швах дополнительно прокладывают два слоя толя, облегчающих взаимное скольжение двух стен при неравномерной осадке.

В отличие от несущих конструкций, для которых первичной является оценка их статической работы под нагрузками, для ограждающих первичными являются воздействия несилового характера: потоков влаги и тепла, распространение звуковых волн и т. п.

Теплозащитные свойства стен зави

сят от способности строительного мате

риала передавать теплоту, что харак

теризуется коэффициентом теплопро

водности. Чем меньше плотность, тем

меньше величина коэффициента его

теплопроводности, тем лучше тепло

защитные       свойства        стен.

Теплоустойчивость—тепловая инер

ция - характеризует способность сте

ны сохранять неизменным тепловое

состояние своих внутренних слоев. Это

состояние может быть нарушено теп

ловыми волнами, распространяющими

ся в теле стены и вызванными перио

дическими суточными погодными изме

нениями температуры наружных по

верхностей. Если эти тепловые волны

угасают в теле стены настолько, что

амплитуда колебаний температуры

внутренних поверхностей незначитель

на, значит, стена обладает хорошей

тепловой инерцией. Обычно такими

бывают массивные стены из достаточно плотных материалов (камня, кирпича и т. п.). Стены из материалов малой массы не обладают такой инерцией.

Воздухопроницание характеризует интенсивность фильтрации воздуха через поры материала и неплотности конструкций (инфильтрация) при разности давлений на наружных и внутренних поверхностях, вызванных гравитацией, ветровым напором и т. д. Инфильтрация в ограниченных пределах полезна ограждающей конструкции, так как способствует просушке стен, уменьшает влажность помещений, интенсифицируя их воздухообмен.

Необходимость обеспечения этих теплофизических свойств дает представление о желательной структуре материала стен: с позиций теплопроводности предпоттительнее пористые структуры и, наоборот, более плотные с позиций теплоустойчивости и воздухопроницания.

Одновременно стена должна обладать еще и таким сопротивлением па-ропроницанию, при котором недопустимо или ограничено накопление в ней влаги за холодный период года, поскольку увлажнение стен приводит к снижению морозо-, био- и влагостойкости материалов. Но самое важное — это ухудшение теплозащитных свойств стены. Основная причина проникновения влаги в стену — диффузия паров 2 из помещений, в которых парциальное давление этих паров влаги всегда больше, чем снаружи. Крайне нежелательно увлажнение материала стен при выпадении конденсата. Конденсат выпадает обычно в холодное время года, когда температура в теле стены имеет отрицательные значения. Диффузирующие пары влаги, перенасыщаясь при остывании, могут конденсироваться в зоне 6.

Выпадение конденсата помимо снижения теплозащитных свойств стены может явиться к тому же и причиной разрушения поверхностных слоев. Механизм такого возможного разрушения состоит в следующем. В процессе замораживания воды, конденсировавшейся в порах материала, образовавшийся лед, увеличиваясь в объеме, давит на стены этих пор, которые вследствие этого испытывают растягивающие усилия. Они и могут служить причиной возникновения трещин, а также и разрушении поверхностных слоев стены.

Меры по ограничению паропроницания сводятся к   следующему.   В тех случаях, когда материал стен или теплоизоляция     стен     имеет   пористую структуру, на внутренней поверхности стен необходим защитный слой пароизоляции. В случае если материал стен имеет плотную структуру, наиболее плотные слои следует располагать ближе к внутренней поверхности.

К защитным от паров влгаи мероприятиям следует отнести и меры по их удалению, если некоторая часть паров проникает в стены через неплотности, трещины, что неизбежно.

В этих целях материалы большей пористости рациональнее размещать ближе к наружным слоям стены; но не на самой наружной поверхности, которая подвержена воздействию осадков, ветра и т. п. Поэтому на наружной поверхности необходим защитный слой из плотных структур.

Из рассмотренного наметились методические предпосылки по проектированию стены как ограждающей конструкции. Но всем видам стен в той или иной мере присущи еще и несущие функции.

Есть два метода совместного учета ограждающих и несущих свойств стеновых конструкций: совмещение этих функций и их разделение. В первом случае конструкция получается однослойной, а во втором—многослойной или ее еще называют слоистой. Во втором случае каждый слой обычно имеет свое назначение: теплоизоляционный, звукоизоляционный, паро-изоляционный, отделочный и т. п.

Стеновые ограждения будут эффективны, если в дополнение к сказанному будут применены конструктивные приемы, предупреждающие местные промерзания — «мостики холода». К ним относятся случаи, когда в наружную стену включаются конструктивные элементы из материалов большей теплопроводности: плиты балконов, заглубленные с наружной стороны, железобетонные колонны или балки, втопленные с внутренней стороны и т. п. В этих местах оставшихся участков стен недостаточно для тепловой защиты, и эти «температурные мостики» являются причиной местного понижения температуры внутренней поверхности и образования конденсата. Меры борьбы — введение слоя эффективного утеплителя.

Конкретные реализации этих методических предпосылок рассмотрены в разд. III—V.

Междуэтажные перекрытия.

Важнейшая ограждающая функция перекрытий - звукоизоляция. Механизм прохождения звуковых волн через междуэтажные перекрытия различен в зависимости от источника звука. Различают ударный и воздушный звуки. Ударный получается при ударах на конструкцию, танцах, ходьбе. Он вызывает мембранные колебания самих конструкций. Небольшая часть звуковых волн проходит через материал конструкции непосредственно. Воздушный звук (речь, звуки радио и т. п.) передается ограждающим конструкциям в виде воздушных звуковых волн 3, большая часть которых отражается поверхностями. Через ограждения воздушный звук может проникать двумя путями: через неплотности, трещины перекрытий — основной путь; второстепенный — вследствие      колебаний конструкций как мембраны.

Исходя из этого, мероприятия по звукоизоляции перекрытий сводятся к следующему:

1.         Одна из эффективных мер борьбы с воздушным звуком — тщательная заделка всех неплтностей в стыках между сборными элементами. в местах сопряжений перекрытий со стенами 7 и т.д.

2.         Для устранения мембранных колебаний можно применить два способа. Первый состоит в увеличении массивности конструкций, их веса. Второй — в устройстве многослойных конструкций со слоями различной звукопроницаемости.

Смысл первого способа состоит в обеспечении такой инерционности массивных конструкций, при которой энергия звуковых волн не возбуждала бы в них колебаний. Смысл же второго способа состоит в том, что на границах двух смежных сред (слоев) энергия звуковых волн уменьшается за счет отражения от каждой новой (по ходу движения) среды (слоя).

Конструкции, выполненные по первому способу, называются акустически однородными (они, исключая конструкцию пола, однослойны); по второму — акустически неоднородными.

Преимущества первого способа заключаются в сравнительной простоте изготовления; преимущества второго— в значительно меньших массе конструкций, и расходе материалов. Так, . масса акустически однородных междуэтажных ограждений жилых зданий ориентировочно не должна быть менее 300...400 кг/см2; масса же акустически неоднородных обычно не превышает _200...250кг/м2.

3.         Эти меры необходимы и доста

точны для изоляции как от воздушно

го, так и от ударного звуков, но при

одном обязательном условии: глуше

нии ударного звука в пределах конст

рукции пола, до того, как звуковые

волны попадут на несущие элементы

перекрытий.

Все сказанное относится к «прямой» передаче звука — в направлении движения звуковых волн. Помимо этого существует и косвенная (обходная) передача звуковых волн, возбуждаемых в конструкции, другим конструкциям, смежным с ней. Это особенно часто встречается в современных зданиях при наличии жестких связей между конструкциями из материалов большой плотности. Одна из существенных мер изоляции от такого шума, называемого структурным, состоит в надежном глушении звуков в перекрытиях, в которых находятся источники звуков. Надежного звукоглуше-ния можно достигнуть устраивая раздельные полы и потолки.

Другие типы перекрытий. В чердачных перекрытиях, как и в наружных стенах,      важнейшей    ограждающей лоизоляционного слоя; дополнительной теплоизоляции отдельных мест, в которых возможно образование мостиков холода; предупреждению увлажнения изоляционных материалов. Толщина слоя теплоизоляции устраивается с учетом того, является ли чердак отапливаемым или нет. В малоэтажном строительстве чердаки, как правило, не отапливаются. В многоэтажном жилом строительстве возможны оба варианта. Основные средства, предупреждающие увлажнение утеплителя парами влаги из: устройство защитного слоя пароизоляций перед утеплителем по ходу движения паров, т. ею в данном случае ниже утеплителя; проветривание чердаков для удаления паров влаги, прошедших через неплотности, и т. п.

Над эркером, над отапливаемым чердаком совмещаются, функции чердачного перекрытия и кровли. Такая ограждающая конструкция — совмещенное бесчердааное покрытие -. применяется не только в упомянутых местах, но является ос-новным типом покрытий производственных зданий, многих общественных и ряда жилых. Методически конструкция этого ограждения может выполняться двумя способами:

1.Крыша и перекрытие, играющее роль чердачного, остаются в виде раздельных частей со сплошным воздушным продувом. 2.Кровля  и чердачное перекрытие объединяются.    Взамен  несущих элементов крыши устраивается основание

кровли (стяжки)    в виде сплошного слоя жесткого материала, укладываемого поверх утеплителя.

В первом варианте получаются вентилируемые совмещенные покрытия, которые правильнее называть совмещенными бесчердачными крышами (по аналогии с чердачными крышами). Во втором имеет место не только совмещение функций кровли и чердачного перекрытия, но и упрощение их конструктивных решений. За счет этого второй вариант дешевле первого на Ш...15% и менее трудоемок. Такие покрытия бывают невентилируемыми и частично вентилируемыми.

Особенности перекрытий под эркером и над проездом IV состоят в том, что в отличие от между-эталАаых они должны предусматривать теплоизоляцию. Защитный слой паро-изоляции, который должен располагаться перед теплоизоляцией, в данном случае укладывается выше утеплителя — под конструкцией пола. Эти же перекрытия должны иметь защитный слой на нижней поверхности — для предохранения от воздухопрони-цания, а иногда и газопроницания. Кроме того, этот слой является отделочным

Водонепроницаемость — свойство, необходимое перекрытиям помещений с влажностным режимом эксплуатации (душевые и санитарные узлы в бытовых помещениях, моечные в банях, санузлы в жилых домах). В подобных случаях под полом устраивается гидроизоляционный ковер, края которого заводят по контуру на стены.

 

К содержанию книги:  Архитектурные конструкции

 

Смотрите также:

 

 Проектирование. Архитектурно строительное проектирование

В нашей стране проектирование новых объектов сельского строительства, расширение и реконструкция действующих производственных предприятий осуществляют ...
bibliotekar.ru/spravochnik-3/65.htm

 

 Документы для проектирования. Проектирование. Архитектурно ...

Вместе с заданием на проектирование заказчик выдает проектной организации: .утвержденный акт о выборе площадки для строительства с материалами согласования ...
bibliotekar.ru/spravochnik-3/66.htm

 

 Проектирование производственных объектов, жилых и культурно ...

Проектирование — это творческий процесс архитекторов, инженеров и техников проектных организаций. Строительное проектирование в нашей стране ведут по единым ...
www.bibliotekar.ru/spravochnik-3/69.htm

 

 Архитектурный проект не просто чертеж будущего здания, это ...

Проектирование .... Бытует мнение, что детальная разработка архитектурного проекта дома индивидуальной застройки — лишняя формальность. ...
www.bibliotekar.ru/dom/3.htm

 

 Механизация и автоматизация труда архитекторов, инженеров и ...

Применение математических методов и ЭВМ is архитектурном проектировании позволяет не ... На первых этапах внедрения ЭВМ в проектирование они применялись для ...
www.bibliotekar.ru/spravochnik-3/77.htm

 

 Проектирование дома

Проектирование. Создание архитектурного проекта — первый и один из наиболее ответственных этапов в строительстве любого сооружения, ...
www.bibliotekar.ru/dom/2.htm

 

 Планировка и проектирование

Проектирование включает проект планировочного решения участка, разработанный на основе ... и разработку единого художественно-архитектурного ансамбля, ...
bibliotekar.ru/uchastki/2.htm

 

 Автоматизация проектирования — новый прогрессивный развивающийся ...

Проектирование проходит на шести уровнях: 1—индустриальные изделия и детали (типовые, ... «Архитектурно-строительное проектирование», являющуюся веду ...
www.bibliotekar.ru/spravochnik-3/78.htm

 

Архитектура

План, архитектурная конструкция и обработка деталей здесь также обнаруживают самобытные черты немецкого искусства. Церковь Елизаветы имеет три нефа ...
www.bibliotekar.ru/Iskuss1/43.htm

 

 Основные конструктивные и архитектурные элементы зданий ...

Основные конструктивные и архитектурные элементы зданий. Все здания состоят из предельного числа взаимосвязанных архитектурно-конструктивных элементов ...
www.bibliotekar.ru/spravochnik-10/4.htm

 

 Архитектура — зодчество, искусство проектировать и строить ...

В разные исторические периоды применялись разнообразные строительные материалы и технологии, существенно влияющие на создание архитектурных конструкций. ...
bibliotekar.ru/slovarZhivopis/91.htm

 

 Сельскохозяйственные здания и сооружения

... программе комплексного курса «Архитектура сельских зданий и сельскохозяйственных ... предметов «Архитектурные конструкции сельскохозяйственных зданий» и ...
www.bibliotekar.ru/spravochnik-44/index.htm

 

 ПОСТРОИТЬ ДОМ. строительства дома из глинобетона, бревен ...

Бартонь Н. Э., Чернов И. Е. Архитектурные конструкции. М., 1986. 3. Дом и участок//0. А. Новоселов, 10. М. Смурое, С. Б. Шляпников и др. М., 1990. ...
www.bibliotekar.ru/spravochnik-91/

 

 МЕТАЛЛОКОНСТРУКЦИИ. Металлические конструкции - нормы и правила ...

«Металлические конструкции» — первое учебное пособие курса «Конструкции зданий и сооружений», предлагаемое студентам архитектурных вузов. ...
www.bibliotekar.ru/spravochnik-108-metallokonstrukcii/index.htm

 

 архитектор Фрэнк Ллойд Райт

Он, «мастер каменной кладки», теперь счёл возможным создавать архитектурные конструкции из элементов заводского изготовления. Его новые проекты учитывали ...
www.bibliotekar.ru/avanta/148.htm

 

 КУПОЛА. КУПОЛЬНЫЕ КОНСТРУКЦИИ. Купол Шведлера, купол Фёппля ...

Для студентов архитектурных специальностей ... Металлические конструкции: нормы проектирования и расчета металлических конструкций… ...
www.bibliotekar.ru/spravochnik-108-metallokonstrukcii/38.htm