Калориметрическая бомба. ТЕПЛОТВОРНАЯ СПОСОБНОСТЬ ТОПЛИВА

Вся электронная библиотека >>>

 Топки. Котельное оборудование >>

 

 Водоснабжение и отопление

Топливо, топки, котельные установки


Раздел: Быт. Хозяйство. Строительство. Техника

 

ТЕПЛОТВОРНАЯ СПОСОБНОСТЬ ТОПЛИВА

 

 

Как уже указывалось, горючими элементами в топливе являются углерод С, водород Н и летучая горючая сера S. Если предположить, что элементы, входящие в состав топлива, находятся в нем в виде механической смеси, то теплотворная способность топлива может быть подсчитана как сумма на основании сведений о сгорании горючих элементов.

Однако определение теплотворной способности подобными методами дает значительное расхождение с действительной теплотворной способностью, определенной методом калориметрирования. Происходит это вследствие того, что нельзя топливо рассматривать как механическую смесь отдельных элементов. Молекулы топлива имеют весьма сложное строение, и в процессе горения происходит химическое разложение молекул с затратой на эти процессы тепла.

Таким образом, зная элементарный состав топлива, его теплотворную способность можно только приблизительно определить непосредственное определение теплотворной способности топлива производится путем сжигания навески топлива в атмосфере кислорода. Для этих целей служит так называемая калориметрическая бомба, представляющая собой толстостенный сосуд, в котором помещается топливо и нагнетается кислород до давления в 25—30 атм.

Бомба имеет емкость около 300 смг в выполняется из кислотоупорной стали. В крышке

бомбы располагаются краны для подвода кислорода и выпуска сгоревших газов. Подвод кислорода производится по трубке в нижнюю часть бомбы; отводятся газы сверху. С крышкой бомбы соединяется стержень, к которому прикрепляется платиновая или кварцевая чашечка, в нее помещают навеску твердого топлива или наливают жидкое. Стержень и трубка, подводящая кислород, образуют электрическую цепь с топливом, причем стержень электрически изолируется от тела бомбы. По цепи пропускается электрический ток. Замыкание цепи производится стальной тонкой проволокой.

Навеску твердого топлива берут равной 0,8—1,5 г, жидкого — 0,6—0,8 г. Из навески твердого топлива часто образуют брикетик, в который и впрессовывается замыкающая сеть запальная проволока, сгорающая при пропускании через нее электрического тока напряжением 12—15 в. Проволока, сгорая, поджигает и навеску топлива.

 

 

Небрикетирующееся топливо (антрацит, тощий уголь,, сланцы, очаговые остатки) сжигают в порошкообразном виде. Запальную проволоку изгибают так, чтобы она соприкасалась с топливом (с порошком твердого топлива или с жидким топливом).

Бомбу погружают в сосуд, наполненный водой и имеющий емкость 2 000—2 500 см3. Эгот калориметр в свою очередь помещают в металлический футляр с двойными стенками, пространство между которыми заполняют водой. Этот футляр в значительной степени защищает калориметр от теплообмена с окружающей средой.

Калориметр снабжают особыми мешалками, приводимыми в движение от электродвигателя и служащими для выравнивания температуры воды.

Комната для калориметрирования должна быть обособленной, окна по возможности выходить на север, чтобы избежать воздействия лучей солнца.

После того как в бомбу положена навеска топлива и впущен кислород с давлением до 25—30 am, через электрическую цепь пропускается ток, запальная проволока и навеска сгорают. Выделяющееся тепло нагревает воду калориметра; повышение температуры воды отмечается по специальному термометру с точностью-до 0,001°.

Деления термометра рассматривают через оптическую трубу* прочно прикрепленную к штативу, чем исключается возможность известных индивидуальных ошибок в определении отметки стояния ртути.

В топливе и в баллоне с кислородом, откуда последний поступает в бомбу, имеется некоторое количество азота, способствующее образованию в бомбе азотной кислоты; точно так же летучая сера сгорает в присутствии воды в серную кислоту. Образование этих кислот сопровождается тепловыделением, которое нужно подсчитать и вычесть из полученной теплотворной способности, так как в эксплуатационной практике сжигания топлива таких кислот не образуется. Вода, образующая кислоты, получается в-бомбе за счет конденсации водяных паров; чтобы полностью обеспечить растворение кислот, в бомбу наливают 10 см3 дистиллированной воды.

При сгорании навески топлива тепло воспринимается не только водой калориметра, но и всей установкой, состоящей из калориметрического сосуда с налитой в него водой, мешалки, термоме1ра и бомбы с ее содержимым. Теплоемкости отдельных частей разные, поэтому предварительно бомбу тарируют, гжигая в ней вещество, теплотворная способность которого точно известна и не изменяется. При этом опыте выясняется водный эквивалент бомбы, т. е. тепловосприятие всех перечисленных частей установки заменяется тепловосприятием эквивалентного весового количества воды. В качестве вещества, сжигаемого при тарировке, обычно используется навеска бензойной кислоты.

Калориметр, находясь в комнате, даже без сжигания топлива в зависимости от температурных условий будет отдавать или воспринимать тепло окружающей среды. Поэтому разность температур, найденная в интервале от начала сжигания до конца повышения температуры воды в калориметре, еще не будет характеризовать теплотворную способность топлива. Надо ввести поправку на теплообмен прибора с окружающей средой, так как за это время он в свою очередь мог отдавать или воспринимать тепло. Систематически записывая температуру воды в течение некоторого времени до опыта, во время опыта и после, можно получить эту поправку. Поправка определится на основании выявления величины изменения температуры воды в калориметре только вследствие воздействия с окружающей средой. Зная вес запальной проволоки и ее теплотворную способность, можно внести поправку и на горение проволоки.

Азот в калориметрическую бомбу попадает вместе с кислородом из баллона, а также из навески топлива. В результате окисления  азота  кислородом  при  наличии  воды  образуется  азотная кислота.

Основываясь на результатах многолетних опытов, А. И. Карелин предложил следующую эмпирическую формулу поправки на образование азотной кислоты в заданных условиях

Поправка утверждена соответствующим ГОСТ.

При сжигании горючей серы, находящейся в топливе, образуется S02 и при наличии воды — серная кислота H2S04. На каждый грамм летучей серы, находящейся в топливе, при образовании серной кислоты выделяется 2 250 кал, или на 1 %—22,5 кал.

При экспериментальном определении теплотворной способности топлива путем калориметрирования пары воды, получившиеся в результате реакции сгорания, конденсируются на относительно холодных стенках бомбы, возвращая скрытую теплоту парообразования. Поэтому теплотворная способность топлива, определенная в калориметрической бомбе, будет выше того количества тепла, которое можно реализовать в практических условиях сжигания топлива в топках котлов или печей.

Связь между теплотворной способностью по высшему и низшему пределам, учитывая потерю скрытой теплоты парообразования, может быть определена следующим образом.

Теплотворная способность газообразного топлива также может определяться в бомбе, но технически такой способ получается сложным, и для исследований часто пользуются калориметрами специально приспособленными для сжигания газа.

Взаимный пересчет теплотворной способности одного состава топлива на другой производится аналогично с пересчетами элементарного состава, только необходимо учитывать затрату тепла на испарение воды.

 

К содержанию книги:  Топливо, топки, котельные установки

 

Смотрите также:

 

ОТОПЛЕНИЕ. Паровые и водогрейные котлы

 

 Генераторы тепла. Отопительные котлы

 

 ОТОПЛЕНИЕ. Паровые и водогрейные котлы

 

 ЭЛЕКТРОДНЫЕ ПАРОВЫЕ И ВОДОГРЕЙНЫЕ КОТЛЫ

 

 Котлы на твердом топливе, чугунные и стальные водогрейные котлы ...

 

 Автоматизированные жаротрубно-газотрубные котлы...

 

 Центральное отопление, котлы, радиаторный обогреватель батареи

 

 Котлы на жидком топливе. Модели бытовых котлов ...

 

 Газовые котлы   ВОДОГРЕЙНЫЕ КОТЛЫ   Газовые теплогенераторы. Чугунные котлы

 

ТОПОЧНЫЕ УСТРОЙСТВА. Топки. Топочные устройства для сжигания топлива   Топки

 

Специализированная газовая отопительная печь

 

 Теплоэлектростанция   Отопление и горячее водоснабжение

 

Устройство санитарно-технического и отопительного оборудования в ...

 

КОТЕЛЬНОЕ ОБОРУДОВАНИЕ. Выбор котельного оборудования  Котельное оборудование. Отопительные котлы

 

 Водяное отопление. При водяном отоплении индивидуальных домов в ...

 

 ВОДЯНОЕ ОТОПЛЕНИЕ. Водяное отопление с принудительной циркуляцией ...

 

 Водяное отопление. Топка печей. Дрова. Торф. Уголь

 

 Центральное отопление   Печное отопление

 

Центральное водяное отопление. Местное отопление

 

 Отопление. потребление тепла, виды топлива, печное отопление

 

 Паровое отопление низкого давления   Местное отопление