ВЛИЯНИЕ ИЗМЕНЕНИЯ СТРУКТУРЫ ЗАТВЕРДЕВШЕГО БЕТОНА НА ЕГО МЕХАНИЧЕСКИЕ СВОЙСТВА ПОД ДЕЙСТВИЕМ ВНЕШНИХ ФАКТОРОВ

  

Вся библиотека >>>

Содержание книги >>>

 

Строительство и ремонт

 Высокопрочный бетон


Быт. Хозяйство. Техника

 

Глава 2. ВЛИЯНИЕ ИЗМЕНЕНИЯ СТРУКТУРЫ ЗАТВЕРДЕВШЕГО БЕТОНА НА ЕГО МЕХАНИЧЕСКИЕ СВОЙСТВА ПОД ДЕЙСТВИЕМ   ВНЕШНИХ ФАКТОРОВ

 

 

Бетон представляет собой тело со сложной структурой. Основные его свойства определяются главным образом физико-химическими параметрами цементного камня, образующегося в процессе гидратации цемента с водой. Первоначальная дисперсная фаза цемента постепенно растворяется в воде, образуя раствор, перенасыщенный по отношению к кристаллогидратным новообразованиям.

Основной процесс гидратации, по-видимому, начинается на границах зерен цементного клинкера. Образующиеся на поверхности зерна гелевые структуры, состоящие из субмикрокристаллов и пор между ними, представляют собой достаточно плотные массы с минимальной пористостью, равной [28% [63]. Размеры пор гелевых структур имеют порядок 20 А. Кроме того, в этой массе образуются капиллярные пустоты. В процессе кристаллизации, происходящей вне зерен цемента, создаются дендритообразные, нитевидные и другой формы новообразования, которые взаимно переплетаются и прорастают. Элементы новообразований обнаруживаются при электронномикроскопическом анализе новообразований цементного камня. С понижением насыщенности раствора рост новообразований продолжается, но при этом процесс сопровождается лишь обрастанием кристаллического каркаса   [74].

Методами электронной микроскопии, ртутной поромет-рии и капиллярной конденсации обнаруживается развитая система пор, отличающихся друг от друга на несколько порядков по своим размерам. гПоры, выявленные методами электронной микроскопии [191 ], имеют сложную и разнообразную форму. На рис. 5 приводится кривая дифференциальной пористости, полученная методами ртутной поромет-рии и капиллярной конденсации из работ Ф. М. Иванова [37]. При этом поры рассматриваются условно как имеющие шаровую форму, эквивалентный диаметр которой (в логарифмическом масштабе) отложен по оси абсцисс на рис. 5.

В бетоне встречаются поры трех типов в зависимости от их связи с другими порами: сквозные, допускающие перемещение влаги, тупиковые и замкнутые. На основании результатов определения электропроводности образцов, насыщенных раствором электролита [37], удается различать пористость цементного камня по двум их качественно отличным характеристикам.

Структура цементного камня может изменяться при введении специальных пластифицирующих, воздухововлекающих и газообразующих добавок. Добавки влияют на процесс формирования кристаллогидратных образований. Это проявляется в изменении характеристик пористости, взаимном объемном размещении пор и капилляров в цементном камне, а следовательно, и в свойствах воды в них.

Пористость цементного камня и соответственно раствора и бетона можно характеризовать общей пористостью Vo, кривой распределения пор по эквивалентным диаметрам Vt = f(pv) и объемом сквозных  Vx и замкнутых пор  V2.



Исходное количество воды, принятое для затворения цементного теста В, в процессе гидратации частично вступает в химическую связь с компонентами раствора цементного клинкера. Остальная часть воды находится в различных термодинамических состояниях в порах и капиллярах цементного камня. Гидрофильный характер поверхности гидратов новообразований способствует адсорбции воды на поверхности кристаллических структур, которая покрывает поверхность полностью или частично мономолекулярными или полимолекулярными адсорбционными слоями. В особо тонких слоях свойства водных пленок толщиной внесколько молекул иные, чем у обычной воды, так как вандер-ваальсовы силы взаимодействия молекул и атомов воды сообщают этим пленкам способность противостоять большим растягивающим и скалывающим усилиям. Наконец, в капиллярах существует вода свободная, которая может перемещаться и переходить в пар при изменении параметров температуры и влажности внешней среды бетона. Таким образом, система пор, характерная для структуры цементного камня, может быть заполнена как водой, так и воздухом или водяным паром в зависимости от условий гидротермального равновесия с внешней средой.

Общее количество первоначально введенной воды В для затворения цемента, как уже отмечено, в последующем частично становится химически связанной водой Вх; остальная часть разделяется на адсорбированную воду ВА и капиллярную Вк.

По данным [37], структуры с ультрамикропорами радиусом менее 5 • 10~7 см (50 А) могут быть отнесены к плотным непроницаемым для воды структурам, где действуют адсорбционные связи воды с поверхностью кристаллической структуры цементного камня. При размерах, пор а в пределах от 5 • 10~6 мм (50 А) до 1 • 10~4 мм (1000 А) происходит капиллярная конденсация, диффузия ионов и замедленная капиллярная фильтрация. Такая структура может быть условно названа диффузионно-проницаемой. При наличии в материале пор с условным диаметром более 0,1 см цементный камень проницаем и легко впитывает влагу.

Химически связанная вода Вх в кристаллогидратах составляет около 40% веса  прогидратированного цемента, что примерно  в  среднем  составляет около   15—20% Во. Таким образом, большая часть воды находится в адсорбированном состоянии и в условиях капиллярных связей. С изменением влажности окружающего бетон пространства количество адсорбированной влаги и находящейся в условиях капиллярной фильтрации существенно меняется. Например, по данным В. М. Быкова, с уменьшением влажности со  100 до 50%  количество адсорбированной воды уменьшается вдвое.

Вода, находящаяся в химически связанном виде в кристаллогидратах, влияет на деформации кристаллических структур, в которые она входит. Безусловно, большое влияние оказывает на деформации цементного камня адсорбированная вода и вода капилляров, препятствуя быстрому протеканию деформаций после приложения нагрузки и взаимной деформации ультрамикрокристаллов в тонких слоях под действием нагрузки.

Указанные особенности цементного камня влияют на прочностные и деформативные свойства бетона. Процессы гидратации цементного камня продолжаются, как правило, годами после приготовления бетонной смеси, что в свою очередь изменяет прочностные и деформативные свойства бетона во времени. Однако далеко не все закономерности этих явлений в настоящее время исследованы. Кроме того, любая структура цементного камня, как бы она ни была тщательно изучена в начальном состоянии до нагружения, изменяется в процессе приложения нагрузки. Поэтому закономерности изменения прочности и деформирования должны изучаться с учетом изменения структуры бетона под нагрузкой.

В зависимости от количества адсорбированной и свободной воды в структуре цементного камня могут существовать различные связи частиц в кристаллизационных дисперсных структурах. Как обращает внимание П. А. Ребиндер [74], между частицами могут быть коагуляционные связи с водными прослойками в месте контакта, или точечные после высушивания, или фазовые при срастании кристаллов в месте контакта. Естественно, что особенность деформирования под нагрузкой кристаллических частичек, имеющих различные виды контактов, будет различной.

Структура цементного камня видоизменяется в зонах контакта с частицами песка в цементно-песчаном растворе и с частицами крупного заполнителя в бетоне.

Поверхность зерен силикатного песка в результате химического и адсорбционного взаимодействия с гидроокисью кальция, находящейся в растворе цементного клинкера в воде, способствует образованию зародышей кристалло-гидратной фазы. При этом возможно прочное срастание песчинки с растущими кристалликами.

Свойства зоны контакта цементного камня и заполнителя в значительной степени влияют на'прочность, долговечность и физико-механические свойства бетона. Следует отметить некоторые особенности, характеризующие свойства контактных зон цементного камня в бетоне в период его твердения, изучавшихся в работах Т. Ю. Любимовой [54].

Структурообразование цементного камня происходит по-разному в объеме и на границе с заполнителем. У порт-ландцементов, а также некоторых других цементов, прочность пограничного слоя отличается от прочности (по измерениям микротвердости) цементного камня в остальном объеме. При этом наблюдаются три стадии процесса структу-рообразования. На первом этапе развития гидратации быстро нарастает прочность. Значительно большая прочность в контактном слое наблюдается в течение примерно первых 30—40 суток. Затем обнаруживается спад прочности контактного слоя бетона в возрасте 50—60 суток и, наконец, наступает третья стадия, когда снова возрастает абсолютная и относительная микротвердость контактных слоев.

На первой стадии твердения у всех заполнителей прочность на границе зерна всегда выше. Предполагается, что заполнитель играет роль подложки, на которой зародыши развиваются с большими скоростями, чем в объеме. Наибольшая степень упрочнения наблюдается на границе с кварцем. Наибольшая способность к упрочнению контактного слоя на границе со всеми заполнителями наблюдается у трехкальциевого силиката (алита). Толщина упрочненных слоев на границе с кварцем составляет примерно 20 мк. Прочность контактного слоя может оказаться различной под частицей крупного заполнителя и над ней. Под частицей заполнителя может образоваться более крупнозернистая структура,  имеющая меньшую прочность.

Следовательно, для понимания закономерностей поведения бетона в условиях нагружения необходимо учитывать реальную структуру бетона и его композиционную основу (цементный камень). Структуру бетона учитывают, например, при анализе процессов разрушения бетона от воздействия низкой температуры и попеременного   замораживания и оттаивания, изучая эффект объемного расширения воды при ее замерзании [63, 50, 61, 38], но без действия внешней нагрузки.

Некоторые исследователи развивают теоретические представления о разрушении структуры бетона под действием внешней нагрузки [7, 10, 17, 22, 27, 53, 113, 125, 156, 159, 194]. Однако они не учитывают влияния всех компонентов структуры цементного камня, какими являются кристаллические образования с наличием пор, капилляров и воздушных включений в бетон, вода в различных ее состояниях. Поэтому необходимо рассмотреть закономерности изменения прочности и деформаций бетона от нагрузки и других воздействий с учетом некоторых параметров структуры.

    

 «Высокопрочный бетон»       Следующая страница >>>

 

Смотрите также: Бетон и строительные растворы  Исходные материалы  1.1. Минеральные вяжущие вещества  1.2. Заполнители  1.3. Вода  1.4. Определение потребного количества материалов  Строительные растворы  2.1. Свойства строительных растворов  2.2. Виды строительных растворов  2.3. Приготовление строительных растворов  2.4. Составы  Бетоны  3.1. Виды бетона  3.2. Свойства бетона  3.3. Приготовление бетонного раствора  3.4. Составы  3.5. Шлакобетон  3.6. Опилкобетон