Катаболизм пищевых веществ, гликолиз, бифосфоглицерат - бифосфоглицериновая кислота

Вся электронная библиотека      Поиск по сайту


 

 

КЛЕТКА

 

Катаболизм пищевых веществ

 

Смотрите также:

История науки

 

История медицины

 

Медицинская библиотека

 

Микробиология

 

Физиология человека

 

Внутренние болезни

 

Ботаника

 

Необычные растения

 

Жизнь зелёного растения

 

Лекарственные растения

 

Необычные деревья

 

Мхи

 

Лишайники

 

Древние растения

Схематично катаболизм пищевых веществ можно представить следующим образом. В первой стадии происходит их расщепление до мономеров. У многоклеточных организмов это осуществляется в пищеварительном тракте под воздействием соответствующих ферментов, после чего полученные мономеры всасываются в кровь (моносахариды и аминокислоты) и в лимфу (жирные кислоты). Расщепление экзогенных органических веществ у простейших происходит в пищеварительных вакуолях, с которыми сливаются первичные лизосомы.

 

Во второй стадии, независимо от природы пищевого продукта, образуется ацетилкоэнзим А (ацетил-СоА). Это соединение, а также другие ферменты, включающие в себя КоА, являются ключевыми звеньями множества разнообразных биохимических реакций ( 26). В III стадии происходит полное окисление ацетильной группы ацетил-СоА до Н20 и С02, при этом большое количество электронов и протонов запасается на молекулах NADH. В дальнейшем энергия электронов используется для образования протонного градиента, что обеспечивает последующий синтез АТР.

 

Рассмотрим более детально энергетический обмен на примере расщепления глюкозы. Сначала она транспортируется через плазматическую мембрану в цитоплазму клетки. В матриксе цитоплазмы происходит ее бескислородное расщепление, или гликолиз, - многоступенчатый ферментативный процесс, в результате которого из одной молекулы глюкозы образуются две молекулы пирувата (пировиноградной кислоты - ПВК) и четыре молекулы аденозинтрифосфорной кислоты (АТР). Однако полезный выход АТР при гликолизе одной молекулы глюкозы составляет всего две молекулы, поскольку две молекулы АТР использовались на ранних стадиях процесса ( 28). ПВК является универсальной молекулой, которая используется различными путями в зависимости от организма или условий метаболизма.

 

Последовательность реакций гликолиза была открыта в тридцатые годы XX в. несколькими учеными (Г. Эмбден, Я.О. Парнас, О. Мейергоф, Л.А. Иванов, С.П. Костычев и А.Н. Лебедев). Процесс начинается с фосфорилирования глюкозы за счет АТР - первая реакция. Это первая пусковая реакция гликолиза. Ее результатом является глюкозо-6-фосфат, имеющий отрицательный заряд. Следует отметить, что в гликолиз может вовлекаться не только глюкоза, но и другие гексозы (например, фруктоза), однако в результате фосфори- лирования и активации все равно образуется глюкозо-6-фосфат.

Во второй реакции происходит изомеризация (внутримолекулярные перестройки) глюкозо-6-фосфата во фруктозо-6-фосфат. В третьей реакции происходит фосфорилирование (присоединение остатка ортофосфорной кислоты) фруктозо-6-фосфата с образованием фруктозо-1,6-дифосфата. При этом затрачивается еще одна молекула АТР (уже вторая) - это вторая пусковая реакция гликолиза.

 

Она идет в присутствии Mg2+ и является необратимой, поскольку сопровождается масштабным уменьшением свободной энергии. В четвертой реакции происходит расщепление фруктозо-1,6-дифос- фата на две молекулы глицеральдегид-3-фосфата. В пятой реакции происходит изомеризация полученных триозофосфатов. На этом заканчивается первая стадия гликолиза - подготовительная (напомним, что эта стадия включает в себя реакции с первой по пятую).

 

Во второй стадии (она включает в себя реакции с шестой по десятую) гликолиза происходят окислительно-восстановительные реакции, а также реакции фосфорилирования. В шестой реакции происходит окисление альдегидной группы до карбоксильной. Выделившийся Н+ акцептируется NAD, который восстанавливается до NADH. Освобождающаяся энергия затрачивается для образования высокоэнергетической связи 1,3-бифосфоглицерата (1,3- бифосфоглицериновая кислота). В седьмой реакции фосфорильная группа 1,3-бифосфоглицерата переносится на ADP, в результате чего образуется АТР (напоминаем, что следует иметь в виду две параллельные цепи реакций, с участием двух молекул триоз, образовавшихся из одной молекулы гексозы, следовательно, синтезируется не одна, а две молекулы АТР). В восьмой реакции происходит перенос фосфатной группы с третьего атома углерода на второй. В результате образуется 2-фосфоглицерат (2-фосфоглицериновая кислота). Девятая реакция сопровождается внутримолекулярными окислительно-восстановительными процессами, в результате которых образуется фосфоенолпируват (фосфое- нолпировиноградная кислота) с высокоэнергетической связью во втором атоме углерода и отщепляется молекула воды. В ходе десятой реакции фосфорильная группа переносится на ADP. При этом синтезируется АТР и пируват (пировиноградная кислота). Эта реакция также необратима, поскольку высокоэкзергонична.

 

Если после гликолиза следует аэробное расщепление, пируват мигрирует в матрикс митохондрий, где, взаимодействуя с коэнзи- мом-А, участвует в образовании ацетил-СоА. В анаэробных условиях пируват при участии NADH восстанавливается до лактата (молочной кислоты), который при этом является конечным продуктом гликолиза. Затем в аэробных условиях лактат может обратно превратиться в пируват и окислиться в митохондриях. Однако большая его часть (около 80%) ресинтезируется в гликоген.

Гликолиз является наиболее быстрым способом получения АТР, однако энергетическая эффективность его невелика. Выход энергии при этом составляет:

глюкоза ® 2 молочная кислота + 2Н+, DG0' (рН 7) = = 196 кДж/моль.

Так как полезный выход АТР при гликолизе одной молекулы глюкозы составляет две молекулы, то КПД этого процесса:

ADP + Н3РО4 ® АТР + Н2О, DG0 (рН 7) = + 34,5 кДж/моль,

34,5 кДж/моль х 2 = 69 кДж/моль

- составляет » 35%. Несмотря на относительно низкую эффективность, гликолиз имеет большое значение для живых организмов. У анаэробных организмов бескислородное расщепление субстрата является единственным источником АТР. Причем среди таких организмов присутствуют не только прокариоты, но и ряд многоклеточных (например, многие гельминты).

 

Чрезвычайно важен гликолиз и для аэробных организмов, поскольку позволяет быстро получить АТР в условиях дефицита кислорода. Например, резкое повышение работы скелетных мышц приводит к пропорциональному увеличению метаболизма (эффект Фенна). Соответственно возрастает уровень потребления АТР мио- цитами более чем в 100 раз по сравнению с покоем. Именно гликолиз обеспечивает значительную часть необходимого при этом АТР, поскольку в ходе его АТР синтезируется в 2 - 3 раза быстрее, чем при аэробном дыхании. Поэтому в саркоплазме миоцитов запасаются гранулы гликогена, при их гидролизе образуется глюкоза. Однако возможности гликолиза не безграничны. Из-за недостатка кислорода в интенсивно работающих мышцах синтезируется большое количество молочной кислоты, поэтому развивается метаболический ацидоз, ограничивающий работоспособность мышц (бегун-спринтер не может бежать с максимальной скоростью более 30 секунд). Накопившаяся в мышцах молочная кислота требует окисления, что приводит к резкому усилению вентиляции легких (кому не знакомо тяжелое и частое дыхание после быстрого бега или иной нагрузки?) и последующей мышечной боли, если организм малотренирован. Регулярные физические упражнения позволяют улучшить кровоснабжение мышц и ускорить распад молочной кислоты.

 

Существует несколько других путей бескислородного расщепления субстрата, более подробно о них рассказано в разделе, посвященном микроорганизмам.

Дальнейшие этапы окисления происходят в митохондриях.

 

В результате гликолиза освобождается лишь около 5% энергии, заключенной в химических связях молекулы глюкозы, остальная же освобождается в митохондриях в процессе аэробного окисления и тоже запасается в АТР. В митохондриях АБР, соединяясь с остатком фосфорной кислоты, превращается в АТР: АТР ® АБР + Р1 (Pi - органический фосфат). В расчете на один моль глюкозы образуется 36 моль АТР.

 

Химическим итогом второй стадии катаболизма является образование ацетил-СоА. При гликолизе это соединение образуется в результате взаимодействия пирувата с коэнзимом-А. При этом от трехуглеродного пирувата остается двухуглеродная ацетильная группа, которая и присоединяется к СоА, образуя ацетил-СоА. Оставшийся от пирувата атом углерода выделяется в виде молекулы СО2. Наиболее важным источником энергии в клетке являются жиры, их энергетическая ценность выше, чем ценность гликогена, более чем в 6 раз, а запасы жира в организме человека примерно в 30 раз больше, чем запасы гликогена. Расщепление жиров идет иначе. Поскольку жиры представляют собой сложные эфи- ры, при первичном расщеплении образуются жирные кислоты и трехатомный спирт глицерин. Затем жирные кислоты (так же как и пируват) поступают в матрикс митохондрий (мембраны митохондрий проницаемы для этих соединений), где вступают в сложный цикл химических реакций. В результате этих реакций после каждого цикла от молекулы жирной кислоты отделяются два атома углерода, которые и идут на образование ацетил-СоА. При расщеплении жирных кислот используются все атомы углерода, тогда как при гликолизе третья часть углерода теряется в виде СО2 (в результате окислительного декарбоксилирования пирувата).

 



 

 

 Смотрите также:

 

метаболизм. СОСТОЯНИЕ МЕТАБОЛИЗМА

(1986) нашли отражение исследования обмена веществ при гипокинезии у человека и животных.
Пищевой рацион животных в этот период не менялся.
Увеличение содержания молочной кислоты свидетельствует об интенсификации процессов гликолиза и гликогено-лиза...

 

ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ — совокупность химических...

Второй тип ферментативных процессов называется диссимиляцией или катаболизмом.
Энергия, высвобождающаяся при расщеплении пищевых и других веществ, используется
В расчете на 1 молекулу глюкозы гликолиз дает 2 молекулы АТФ, а процесс окислительного...

 

Обмен углеводов. Основная роль углеводов определяется...

Глава 10. Обмен веществ и энергии.
Распад углеводов в организме животных происходит как бескислородным путем до молочной кислоты (анаэробный гликолиз), так и путем окисления продуктов распада углеводов

 

СИНТЕЗ САХАРОЗЫ И ПОЛИСАХАРИДОВ. Гликолиз.

При полном окислении одной молекулы гексозы образуется 38 молекул АТР. Гликолиз. Различают три стадии процесса дыхания.
А так как поглощение минеральных веществ из почвы связано с расходованием АТР, у растений, произрастающих на плохо дренированных...

 

ОБМЕН ВЕЩЕСТВ

В организме динамически уравновешены процессы анаболизма (ассимиляции) — биосинтеза органических веществ, компонентов клеток и тканей, и катаболизма (диссимиляции) — расщепление сложных молекул компонентов клеток.

 

БИОЛОГИЧЕСКИЕ ПОНЯТИЯ. Метаболизм. Обмен веществ...

Часть общего процесса обмена веществ, завершающаяся разруб шением веществ, входящих в состав организма, т. е. распадов элементов живого тела и их диссимиляцией, называют катаболизмом.

 

Моносахариды пентозы и гексозы

Он входит в состав веществ, определяющих аромат хлеба. Фурфурол с соляной кислотой и анилином дает интенсивное красное окрашивание, что используют для качественного и количественного определения пентоз.
Гликолиз.