«Эврика» 1962. НЕИЗБЕЖНОСТЬ СТРАННОГО МИРА

 

 

Парадоксы законов квантовой механики

 

 

 

Замечательно, что надежды на возвращение к «точным» законам движения никто и никогда не связывал с мыслью о таком улучшении квантовой механики. Она в этом не нуждалась. Физики сразу увидели, что на нее можно положиться: припомните цифру — около тысячи работ по квантовой механике за первые два года ее существования! Она блистательно доказала свою правоту и работоспособность. Она доказала, что открытые ею «неточные» законы гораздо безупречнее по точности, чем точнейшие законы механики классической.

 

Это звучит как парадокс, но приблизительность классических законов состояла именно в их абсолютной точности. Они приписывали природе то, чего в ней нет. Законы классической причинности как бы «улучшали природу» — они исправляли ее великую небрежность, ибо она сама вовсе не позаботилась о том, чтобы любые события совершались в ней по единственному заранее и навсегда установленному расписанию. Но то обстоятельство, что наука «улучшает» природу, доказывает не истинность знания, а его ограниченность. Снабдив частицы волновыми свойствами, природа наделила их целым спектром возможностей. А классическая механика заставляла все тела всегда ходить по струнке. Точность ее законов была очень удобной: она позволяла ученым однозначно предсказывать поведение механических систем. Однако, как заметил первооткрыватель электрона Джи-Джи Томсон, «нельзя думать, что вселенная построена по принципу наибольшего удобства математиков». Абсолютная математическая точность классических законов обернулась их физической неточностью.

 

Это-то и подвело классическую однозначную причинность, когда она попыталась распространить свой деспотизм и на микромир, где волновыми свойствами частиц уже нельзя было пренебрегать безнаказанно.

 

...Согласно старым «точным» законам альфа-распад радиоактивных ядер, скажем, урана, был бы совершенно невозможен. Неважно, как внутри тяжелого уранового ядра образуется легкое ядро гелия — альфа-частица. Важно, что эта альфа-частица удерживается в урановом ядре огромными силами ядерного притяжения. Они гораздо могущественней сил электрического отталкивания, которые стараются выставить альфа-частицу наружу. Ядро как бы окружено барьером — физики называют его «потенциальным». Прорваться через него4 трудно — он высок. Для этого нужна большая энергия движения. Изучая альфа-распад, физики убедились, однако, в необычайной ситуации: энергия вырвавшихся на свободу частиц оказалась намного ниже высоты потенциального барьера. Как же альфа-частицам удается совершать невозможное? По строжайшим пред-писаниям классических законов любая альфа-частица была бы обречена только колебаться в пределах ядра, без малейшей перспективы покинуть его, пока, быть может, из какого-нибудь внешнего источника к ней не притекла бы нужная энергия. Между тем ядра урана распадаются самопроизвольно!

 

Квантовая механика объяснила необъяснимое. На основании принципа неопределенности она показала, что у альфа- частицы всегда есть возможность как бы нечаянно оказаться и по ту сторону барьера. Только вероятность этого классически-незаконного события. очень мала. Так мала, что средняя продолжительность жизни уранового ядра — благопо

лучной жизни до альфа-распада — измеряется непредставимо громадным промежутком времени: примерно 6,5 миллиарда лет. (Оттого-то, хотя в залежах урановых руд нет-нет да и распадаются то тот, то другой атом, эти руды не исчезли в земной коре. Возраст Земли, по современным оценкам геологов, 4—5 миллиардов лет. Это все-таки короче средней продолжительности жизни урана.)

 

Проникновение альфа-частицы за потенциальный барьер было «азвано «просачиванием», а все это странное явление физики стали называть «тоннельным эффектом»: частица не преодолевает барьера поверху, так как ее энергия для этого слишком мала, а как бы прорывает тоннель из ядра на волю.

 

В этих образных выражениях — просачивание и тоннель — слышится вечная тоска физиков по наглядным представлениям. Так и хочется вообразить себе альфа-крота, который затрачивает в среднем шесть с половиной миллиардов лет на прорытие тоннельного хода в гористом барьере, окружающем урановое ядро. Нас должно утешать, что эти образы придумывают сами высоколобые теоретики.

 

Вы еще не забыли свидетельства Ландау, что сознание физиков работает ныне в таких сферах, где воображение уже не может оказать им никаких услуг? Однако видите: все- таки они прибегают к его услугам. Математической мысли теоретиков; так же как и нашей более скромной мысли, не очень уютно живется среди одних только непредставимых отвлеченностей. Стоит еще раз вспомнить, как Эйнштейн в письме к де Бройлю говорил о «гадких квантах». Может быть, поэтому теоретики время от времени и привлекают себе на помощь поэзию: она возвращает их заоблачную мысль в наш земной классически-причинный мир, где действительно надо шаг за шагом прорывать тоннель, чтобы выбраться на ту сторону горы. Им, как и нам, образы помогают яснее понять непонятное. Но мы, как и они, должны отдавать себе отчет, что эти образы — только образы! Млечный Путь не сделан из молока, и он не путь, а альфа-частица не роет на протяжении миллиардов лет никакого тоннеля.

 

Эти миллиарды лет средней продолжительности спокойной жизни уранового ядра говорят лишь о том, какая редкость альфа-распад, — как редко из всех возможностей движения альфа-частицы осуществляются те, что выводят ее за пределы барьера ядерных сил.

Однако хоть и редко, но осуществляются!

Между «редко» и «никогда» — гигантская разница.

 

Классическая причинность говорила альфа-распаду — «никогда!». Как и для всего на свете, она не допускала для альфа-частицы обилия возможностей, а признавала законной только одну —i ту, которая обладает стопроцентной вероятностью осуществления: в самом деле, если бы энергия альфа-частицы заранее превышала величину барьера, она, конечно, немедленно покинула бы ядро. Такой альфа-распад классическая причинность милостиво разрешила бы. Да только ядра урана в этом разрешении уже не нуждались бы: их просто не существовало бы на свете—они распались бы сразу.

 

Стопроцентная вероятность — это полная достоверность события. Вот идол, которому поклоняется классическая причинность. А природа этому идолу вовсе не поклоняется. И квантовая механика оказалась физически гораздо более точной наукой, чем ее предшественница. Настолько точной, что, например, в теории альфа-распада она безукоризненно правильно связала энергию вылетающих альфа-частиц со средним временем жизни радиоактивных элементов. И эта энергия и это среднее время (рыли измерены на опыте задолго до появления квантовой механики. Но смысл таблиц, которые составлялись учеными, и смысл кривых, которые они чертили в своих лабораториях, оставались загадочными, пока вероятностные законы микромеханики не раскрыли этих загадок.

 

Может показаться непонятным — откуда берется какая бы то ни была точность предсказаний там, где господствует случай? И вправду: когда ожидаемое событие не единственно возможное, когда оно не обладает стопроцентной вероятностью, оно ведь может наступить, а может и не наступить!

 

Если бы экспериментатор умудрился проследить за излучением какого-нибудь одного возбужденного атома натрия, он вовсе не обязательно стал бы свидетелем испускания «желтого кванта». Могла бы на его глазах осуществиться и другая возможность, поскольку излучение иных порций энергии здесь тоже имеет свою вероятность: разрешенных уровней энергии много, и возможны разные квантовые скачки с уровня на уровень. Лишь одно достоверно — какой-то из возможных для натрия квантов был бы испущен. Но теоретик не взялся бы утверждать, какой именно квант будет излучен этим атомом в этом опыте. Так где же тут математическая точность предсказания?

 

Ее действительно нет. Но в том, что ее нет, есть высшая физическая точность. Есть точность отражения того, что происходит в природе, а не на бумаге. Это подтверждается опытом: мы же видели, как электроны, падая в одинаковых условиях через одну и ту же узкую щель в экране, приземляются «е в одном и том же месте, а в разных местах фотопластинки. Факт непостижимый с точки зрения классической причинности, но тем не менее факт! Уж не царит ли в микромире произвол?

 

Нет. Хотя там и господствуют случайности, произвола там нет. Случайности подчиняются своей дисциплине. И потому в предсказаниях квантовой механики есть и своя высшая математическая точность.

 

...В любых спектрах натрия все-таки наиболее ярко горит желтая линия, а не какая-нибудь другая.

 

...Во всех залежах урановых руд за равные сроки претерпевает альфа-распад одна и та же доля атомов урана, и средняя продолжительность жизни его ядер — 2,04 • 1017 секунд, или 6,5 миллиарда лет, — всюду одинакова.

 

...Поток электронов, пролетевших сквозь узкую щель, прорисовывает на пластинке ясную волновую картину дифракции, а не располагается как попало.

 

Суть в том, что корпускулярные и волновые свойства частиц связаны закономерно. И для каждой возможности в любом микроявлении возникает своя вероятность осуществления. И когда случай может хорошо поработать, когда излучают сразу триллионы возбужденных атомов, когда перед перспективой альфа-распада оказываются триллионы триллионов неустойчивых ядер, когда к пластинке устремляется через щель бесчисленное множество частиц, тогда каждый шанс успевает сбыться, и в результате каждая возможность становится действительностью в своей статистически закономерной доле.

 

Здесь как нельзя более кстати можно вспомнить прекрасные слова Маркса о необходимости, которая пробивает себе дорогу сквозь толпу случайностей!

 

Около ста лет назад были сказаны эти слова. И, разумеется, Маркс произнес их совсем по другому поводу. Не только до принципа неопределенности, но даже до открытия электрона было еще далеко. Однако мысль Маркса звучит поразительно современно. Она словно бы специально приурочена к тридцатилетним непрекращающимся спорам вокруг квантовой механики.

 

Вероятности разрешенных природой — возможных! — событий в микромире пробивают себе дорогу сквозь толпу случайностей. Закономерным распределениям вероятностей в конце концов подчиняется случай. Это та необходимость, которая заменяет в микромире классическую однозначную причинность.

 

Квантовая механика в своих предсказаниях дает именно эти закономерные распределения вероятностей. Она дает их с полной и строгой математической точностью.

Может быть, самый убедительный пример надежности ее предсказаний — убедительный для любого человека — исправная работа атомных электростанций. Благодаря высочайшей точности вероятностных расчетов физики научились управлять стихийно-случайным и чудовищно-грозным процессом деления ядер урана и тория. Атомные реакторы — это, в сущности, кванговомеханические машины, вырабатывающие ядерную энергию.

 

Нет, нет, физики, мечтавшие и мечтающие о возвращении к старой однозначной причинности, никогда не выражали недовольства квантовыми законами из-за их «неточности». Не было для этого оснований! И не о свержении квантовой механики они помышляли. Это было бы вопиющей несуразицей. Меньше всего можно было бы заподозрить в таких намерениях Эйнштейна и де Бройля — людей, давших квантовой механике ее первые революционные идеи. Нет, они хотели только одного: спасти свою «философию природы».

 

Это было трудное испытание: от собственных физических идей спасать свою веру в классический детерминизм. Веру — снова надо повторить — именно веру! Не существовало никаких научных и философских оснований предпочитать однозначную причинность многозначной, вероятностной. Ход вещей в црироде не становился от этого менее закономерным.

 

Может быть, Эйнштейн в глубине души соглашался с этим? Он ведь ограничивался, в сущности, только критикой вероятностного истолкования законов квантовой механики, он словно бы дразнил ее создателей своими парадоксами, но не тратил усилий на поиски какого-нибудь иного толкования. Может быть, он чувствовал безнадежность таких усилий?

 

Де Бройль посвятил им лучшие годы жизни и занят этого рода исканиями сейчас, на склоне лет. И надо ли удивляться, что он сам назвал собственное открытие, с которого5 все началось— открытие двойственности волн-частиц, — «наиболее драматическим событием современной микрофизики»?!

 

Нас это удивить уже не может, но вместе с тем и не удивляться тут нельзя. Вдумайтесь в смысл его слов: драматическим названо не заблуждение, а глубокое прозрение, не отход от правды природы, а приближение к истине!

 

Разве не значит это, что великое научное достижение ученого стало для него источником настоящей внутренней смуты? Оно заставило его как бы поссориться с самим собой. Де Бройль произнес приведенные выше слова сравнительно недавно — в октябре 1952 года.

В сущности, у его личной драмы идей тот же.возраст, что и у самой квантовой механики. И раз уж начался наш рассказ о рождении микромеханики с надежд и сомнений де Бройля, то, пожалуй, естественно бедами де Бройля его и окончить: это будет означать, что конца нет. Знавшая столько бурь и незнакомая с затишьями, история квантовой механики продолжается...

 

Уже ясен смысл сомнений французского физика. Но в чем же смысл его надежд на возвращение к старой однозначной причинности? Он сам предупреждает, что в этих поисках путей назад — к механистическому детерминизму — «в конечном счете не исключена возможность неудачи». Однако добавляет: «В науке, как и в повседневной жизни, счастье часто улыбается смелым».

 

Заметьте, как на протяжении творческой жизни одного человека решительно изменилось положение 'В физике! В начале 20-х годов, когда он работал над своей знаменитой диссертацией, нужна была смелость, чтобы старым классическим представлениям противопоставить новые — небывалые. Нужна была не только смелость мысли, но и смелость ха- рактера, дабы не убояться критики, недоверчивых улыбок, насмешливых слов. А теперь, через тридцать с лишним лет, смелость оказывается необходимой уже для прямо противоположного дела: для попыток вернуться вспять — от небывалого к бывалому. Это лучшее свидетельство того, как прочно победила «квантовая революция» в физике. Теперь требует отваги уже посягательство на ее принципы.

 

Так на что же надеялся и надеется Луи де Бройль?

 

Оттянем еще немного ответ на этот вопрос. Надо сначала, хоть в общих чертах, рассказать, как было дело.

 

 

К содержанию книги: Научно-художественная книга о физике и физиках

 

 Смотрите также:

  

Физика. энциклопедия по физике

Книга содержит сведения о жизни и деятельности ученых, внесших значительный вклад в развитие науки.
О физике

заниматься физикой как наукой или физикой, которая...

Эта книга адресована всем, кто интересуется физикой. В наше время знание основ физики необходимо каждому, чтобы иметь правильное представление об окружающем мире

Энциклопедический словарь

И старшего. Школьного возраста. 2-е издание исправленное и дополненное. В этой книге  Гиндикин С. Г. Рассказы о физиках и математиках

 

И. Г. Бехер. книга Бехера Подземная физика

В 1667 г. появилась книга И. Бехера «Подземная физика», в которой нашли отражение идеи автора о составных первоначалах сложных тел.

 

Последние добавления:

 

Право в медицине      Рыбаков. Русская история     Криминалист   ГПК РФ