Энергия и масса — единое

 

«Эврика» 1962. НЕИЗБЕЖНОСТЬ СТРАННОГО МИРА

 

 

Энергия и масса — нечто единое

 

 

 

И не нужно ударять кулаком по столу. Закон сохранения массы соблюдается вместе с законом сохранения энергии. Два этих фундаментальных закона природы объединяются теперь в один. А представление о всепроникающей материальности мира не только не несет при этом никакого ущерба, но, напротив, становится исчерпывающе полным.

 

И мысль о мире, в котором прибывает и прибывает масса оттого, что звезды во вселенной и электроны в атомах начинают двигаться быстрее, теперь заставила учителя улыбнуться. «Как могла прийти мне в голову такая нелепая карти-. на! — упрекнул он самого себя. — Все звезды и все электроны не могут начать двигаться быстрее одновременно. Откуда взяли бы они для этого нужную энергию? Кто передавал бы им вместе с энергией массу? Если какие-то тела убыстряются, другие неизбежно замедляются. Вот в чем дело! Нельзя пугаться бессмыслиц».

 

Старый учитель все-таки снова был и обрадован и смущен этим новым знанием — этим законом единства энергии- массы: уж очень далеко пришлось ему отойти от всего того, что когда-то, в XIX веке, другой старый педагог — университетский профессор с такою же земской бородкой — рассказывал ему, тогдашнему студенту, на лекциях по физике.

Нелегко было поверить, что нагретый утюг должен быть тяжелее самого себя — холодного; что жар увеличивает вес больного; что птица в клетке легче птицы в полете; что Солнце, непрерывно источая свет и тепло в пространство, теряет вместе с энергией часть свой массы — буквально тает на глазах человечества... Один известный физик сравнительно недавно говорил, что он не может допустить мысли, будто возрастание скорости электрона постепенно «превращает его в арбуз». Этим уничижительным карикатурным арбузом он хотел высмеять то, чего не в силах был опровергнуть и с чем не могло примириться его классическое сознание.

 

И тем не менее с железной необходимостью оказывается, что и утюг, и птица, и Солнце не могут избежать подобных превращений — не могут-«вести себя» иначе: приход и расход энергии — это приход и расход массы. И электрон, доведенный почти до скорости света, способен стать «тяжелее» не только арбуза, но и Земли, и всех звезд Галактики, и вообще — любой конечной массы во вселенной. Все зависит лишь от того, как мало будет

отличаться его скорость от световой.

 

Это теоретически. А практически — вся штука в том, как довести электрон до этакой чудовищной скорости.

 

«А пожалуй, — подумал неуступчивый, но последовательный старый учитель, — такое положение вещей естественно: разве легче примириться с мыслью, что материальное естество любого физического тела должно оставаться совершенно безучастным к такому важному событию, как изменение энергии этого тела? Так веками считали ученые. Так меня учили в школе, и я учил других. Но, по совести говоря, безучастность материи к собственному движению давно должна была бы показаться подозрительной и физикам и философам. Последние, пожалуй, могли бы даже заранее предсказать, что когда-нибудь физики откроют внутреннюю связь между массой и энергией тел. Удивительно, что философы этого не сделали! Еще удивительней — почему физики так долго этой связи не замечали?»

 

Он хотел сам найти ответ на этот вопрос. И вспомнил, что ведь еще сравнительно недавно врачи не знали о существовании микробов, хотя человечество никогда не уставало болеть. Над Пастером смеялись его Коллеги, а в это самое время микробами кишела вода, которой запивали они свои долгие протестующие речи. Он вспомнил и про бесконечные споры о существовании атомов... Слишком малое может ютиться подле нас и в нас, а мы не будем о нем подозревать!

 

И тогда ему пришла в голову простая догадка: наверное, даже огромному приросту энергии тела соответствует очень малый прирост массы — такой малый, что на обычных весах его не измеришь. Если это действительно так, то многовековая слепота физиков простительна — то была слепота их несовершенных инструментов.

 

Конечно, старый учитель и на сей раз был прав. Физик тотчас показал ему знаменитую формулу связи энергии и массы — одну из замечательнейших формул в естествознании.

Приводить ли ее здесь или нет? Мы ведь молча условились разговаривать без математики.

Но все-таки трудно удержаться от соблазна — нужно хотя бы полюбоваться простотой этой формулы:

где Е — энергия, М — масса, С — скорость света.

 

Сразу видно, что даже в крошечной массе заключена громадная энергия, потому что малая величина этой массы умножается на колоссальную величину — квадрат световой скорости. И наоборот: даже огромная энергия обладает ничтожно малой массой.

К тому моменту, когда наша полуторатонная ракета, полетевшая в сторону Луны, достигла второй космической скорости— 11,2 километра в секунду, ей была передана гигантская энергия. Но масса ракеты возросла от этого лишь на один миллиграмм. Только и всего... Какую же мизерную прибавку в весе испытывает, скажем, раскаленный утюг?

 

Или больной, разметавшийся в жару? Пусть температура у бедняги подскочила на три градуса — с тридцати семи до сорока, а весит он килограммов 70, а то, что можно назвать теплоемкостью, пусть равно для его тела теплоемкости воды — 1; тогда тело его станет вместилищем примерно 210 больших калорий лишней тепловой энергии. Какова масса этого излишка? Превратив калории в эрги, выразив скорость света в сантиметрах в секунду, возведя ее в квадрат, получив грандиозное число с 20 нулями — 900 000 000 000 000 000 000, а затем разделив энергию на это число, мы выясним, что больной «потолстел» приблизительно на одну стомиллионную грамма. Не много, не правда ли?

Никакие опыты на протяжении многих веков не могли да.ть физикам никаких указаний на «прибавку в весе» у движущихся тел. В нашем мире сравнительно медленных и тяжелых вещей такие прибавки — гномы в царстве великанов. Сама Земля летит по своей орбите в 10 тысяч раз медленнее фотона. Так могло ли наблюдение обычных земных скоростей навести ученых на мысль, что масса тел растет вместе - со скоростью?

И все-таки еще до Эйнштейна два физика сумели опытным путем близко подойти к открытию великого закона эквивалентности энергии и массы. Совсем близко! Это были профессор Лебедев, работавший со светом, и профессор Кауфман, работавший с электронами.

 

Петр Николаевич Лебедев, чьим именем гордится мировая наука, доказал, что существует давление света, предсказанное еще Максвеллом. Он доказал это столь же тонко и просто, сколь и неопровержимо: в его поразительных опытах световой луч от вольтовой дуги поворачивал крылышки легчайшего пропеллера, подвешенного на нити, и, таким образом, закручивал эту нить.

 

Свет механически работал! Как ветер, как град... Поток электромагнитной энергии обнаруживал воочию, что он обладает массой. Сообщение Лебедева на Всемирном конгрессе

 

физиков в Париже принесло ему широчайшую известность. А науке оно принесло уверенность, что нет никакой пропасти между «чистой энергией» (свет) и «чистой массой» (вещество) .

 

И снова достойно внимания, что это произошло на рубеже, отделявшем прошлый век от нынешнего, — в том самом 1900 году, когда Планк выдвинул гипотезу квантов. На том же парижском конгрессе физиков Мария и Пьер Кюри докладывали о первых успехах в изучении радиоактивности. И в том же Париже, в том же самом году, другой конгресс — электротехнический — наградил Александра Степановича Попова дипломом и золотой медалью за изобретение радио.

 

Есть у выдающихся событий в истории науки такое обыкновение — сгущаться на коротком отрезке времени, потом оставлять как бы пустыми несколько лет, потом снова сгущаться. Так было в 1895—1896, 1900, 1905 годах. Но и у всех последующих десятилетий нашего века бывали свои счастливые высокоурожайные годы. Одна из таких памятных вех в истории изучения первооснов материи помечена совсем недавними годами— 1955—1956... Такие сгущения исторически не случайны, так же как не случайны обильные урожаи на упрямо, изо дня в день возделываемом поле.

 

В легком и быстром мире — в мире элементарных частиц — эквивалентность энергии и массы проявляется так броско, так ощутимо, что если бы этот закон и не был открыт в 1905 году как ближайшее следствие теории относительности, он все равно возник бы в атомной физике как рабочая гипотеза, а потом... А потом, раньше или позже, все равно была бы создана широкая общая картина движения материи, совпадающая с той, что открылась в работах Эйнштейна. Может быть, она, эта картина, не называлась бы тогда теорией относительности, а именовалась бы как-нибудь по-другому, но скорость света все равно удостоилась бы в ней особого места, как величина, предельная для физических скоростей. И тогда временная рабочая гипотеза экспериментаторов сама собой превратилась бы в строго установленный, нерушимый и всеобщий закон: Е—М-С2.

 

Двадцатишестилетний эксперт третьего класса Альберт Эйнштейн, стоя за служебной конторкой в тиши Швейцарского патентного бюро, вывел закон эквивалентности чисто теоретически, на клочке бумаги, и жаждал его опытной проверки. Атомники-экспериментаторы нащупали бы этот закон в шумном многолюдье своих лабораторий чисто практически:

иначе они просто не могли бы никак объяснить странностей в поведении атомных частиц.

В самом деле: помните сравнение скорости протонов, летящих по узкой дорожке в камере дубенского ускорителя, со скоростями наших первых спутников Земли?.. Когда-нибудь фотонные ракеты, быть может, полетят в мировое пространство со стремительностью дубенских протонов. И тогда масса этих ракет возрастет уже не на какие-то жалкие миллиграммы: при скорости в 260 тысяч километров в секунду каждая ракета удвоит свою массу — было полторы тонны, станет три. Но протоны в Дубне путешествуют еще быстрее. Накопив 10 миллиардов электроновольт энергии, каждый из них более чем удесятеряет свой вес. И, разумеется, физики отлично чувствуют в своих опытах и расчетах такое увеличение массы своих подопечных — ведь это увеличение больше чем на тысячу процентов! Это увеличение заранее «почувствовали» и конструкторы ускорителя.

 

Протоны-миллиардеры в Дубне становятся по тяжести подобными атомам углерода. Ускорять их делается все труднее по мере того, как они постепенно тяжелеют. Надо изменять то время, в течение которого переменное электрическое поле нарастает, чтобы отяжелевшие протоны попадали на «.пояски ускорения» в нужный момент, а не запаздывали из- за своей увеличивающейся грузности. Конструкторы это предвидели, создавая сложную машину.

 

Короче говоря, есть уже в сегодняшней технике случаи, когда без всеобщего закона Е=М-С2 не могут обойтись даже инженеры. Из теоретической эта формула стала достоянием технических руководств. А что делали бы без нее физики- атомники?

 

Как в комнатах кривых зеркал, где стройные красавцы выглядят головастиками-уродцами, отражался бы в лабораторных приборах непонятно искаженный микромир. Было бы отчего прийти в отчаяние. «Что за наваждение! — говорили бы друг другу физики. —

Либо наши приборы безнадежно врут, либо мы не знаем чего-то самого главного».

Заметьте — самого главного!

 

Наверное, раздадутся голоса:

— Возвращайтесь в Дубну, возвращайтесь на Арагац! Рассказывайте о сегодняшних днях науки. Хватит отступлений!..

 

Должен сознаться, что с первоначальным замыслом этих «путевых заметок» действительно что-то случилось по дороге. Я вдруг почувствовал, что рассказ о работе наших ученых в Дубне, о драматических поисках новых частиц на Арагаце и вообще рассказ о науке, изучающей глубины материи, будет удручающе темным и никому не нужным, если не попробовать по возможности простыми словами изобразить неизбеж- ность странного мира, в который погружает человека современная физика.

Этот странный мир — сама природа, с теми ее законами и повадками, какие оставались неизвестными классической физике. А в школах все мы проходили начатки только этой старой физики. И до сих пор средняя, для всех обязательная, школа почему-то лишь с классическими представлениями и знакомит большинство человечества. А потом, после школы, это большинство уже никогда с физикой не соприкасается: другие интересы, другие заботы одолевают людей — каждого по роду его деятельности. Успев на школьной скамье стать современниками Ньютона, мы не успеваем стать современниками Эйнштейна. Озабоченная только тем, чтобы мы знали назубок законы Ома и Гей-Люссака, с которыми, вообще-то говоря, нам в жизни потом решительно нечего делать, хотя знать их, конечно, полезно, школа совершенно не заботится о нашем физическом мировоззрении. А между тем каждый жаждет хотя бы почувствовать неизбежность и осознать необходимость той неклассической, по слухам — совершенно непонятной, картины движущейся материи, которую рисует физика XX века.

 

Потому-то, может быть, отступления и должны быть самым главным в этом рассказе об элементарных частицах, и потому-то, пожалуй, незачем скупиться на мнимые «уходы в сторону».

 

...Пора бы передохнуть от рассуждений, но не тут-то было: разве рассеялись все сомнения, вызванные у нас непостижимым сообщением энциклопедии, что масса покоя фотона равна нулю?

Непостижимым? Нет, справочники не загадывают загадок, они только информируют. Узнав необычный факт, мы постарались с ним примириться. Однако состоялось ли примирение до конца?

 

Хорошо, решили мы, раз масса покоя у световых частиц нулевая, значит они в покое пребывать не могут под угрозой гибели. Значит, догнать их и заставить покоиться относительно чего бы то ни было нельзя. Значит, скорость света — наибольшая из возможных скоростей, и другие материальные тела достигнуть ее не могут. Значит, масса их растет вместе со скоростью, чтобы в пределе — при скорости световой — сделаться бесконечной. Значит, прибавление энергии движения равносильно прибавлению массы.

 

 

К содержанию книги: Научно-художественная книга о физике и физиках

 

 Смотрите также:

  

Физика. энциклопедия по физике

Книга содержит сведения о жизни и деятельности ученых, внесших значительный вклад в развитие науки.
О физике

заниматься физикой как наукой или физикой, которая...

Эта книга адресована всем, кто интересуется физикой. В наше время знание основ физики необходимо каждому, чтобы иметь правильное представление об окружающем мире

Энциклопедический словарь

И старшего. Школьного возраста. 2-е издание исправленное и дополненное. В этой книге  Гиндикин С. Г. Рассказы о физиках и математиках

 

И. Г. Бехер. книга Бехера Подземная физика

В 1667 г. появилась книга И. Бехера «Подземная физика», в которой нашли отражение идеи автора о составных первоначалах сложных тел.

 

Последние добавления:

 

Право в медицине      Рыбаков. Русская история     Криминалист   ГПК РФ