«Эврика» 1962. НЕИЗБЕЖНОСТЬ СТРАННОГО МИРА

 

 

Кванты и фотоны

 

 

 

Физически кванты и фотоны — это одно и то же, а исторически разница между ними та же, что между призывником и солдатом, замыслом и воплощением.

 

Но вот что интересно: сделав решительный шаг вперед, Эйнштейн вместе с тем как бы отступил назад — во вчерашний день физики.

 

Биография фотона неожиданно связала вчера и сегодня в истории открытия элементарных частиц материи. Это двухвековая биография. Некоторые ее эпизоды только что и разворачивались перед нами. Теперь нужно вставить в их цепь начальное звено, чтобы цепь замкнулась, как в рассказе о всяком стоящем приключении, даже если это лишь приключение ищущей человеческой мысли.

 

Дело в том, что за двести лет до Эйнштейна частицы света уже существовали в науке. Они появились почти одновременно с волнами Гюйгенса. Их придумал Ньютон. Этим-то он и обогатил будущих «алхимиков», не сумев ничем помочь современникам. В отличие от волновой его теория света называлась «теорией истечения». Световым частицам он дал имя — корпускулы, что значило по-латыни «маленькие тела». Оттого и теория его получила второе название — корпускулярная. Так называют и сегодня фотонную теорию Эйнштейна.

 

Так что же — снова подтверждается старая поговорка: «Ничего нет нового под луной»? Тем наглядней подтверждается, что и мысль-то об излучении света как об истечении особого вещества была и во времена Ньютона вовсе не нова. Мы же застали Кеплера у дверей пражского казначейства как раз за размышлением на эту тему, а он ведь умер, когда Ньютон еще не родился!

 

Нет, не стоит все же безоговорочно полагаться на старую мудрость. Ньютон не повторял Кеплера, а Эйнштейн — Ньютона. Верно лишь одно: спор между идеями прерывности и непрерывности — очень старый спор в физической науке.

 

Кеплер думал, что световое вещество истекает непрерывно и движется с бесконечной скоростью. А во времена Ньютона Ремер уже доказал конечность скорости света. Ньютону виделась иная картина, чем Кеплеру: истечение прерывистого светового вещества. И при этом световые корпускулы разного цвета представлялись ему тельцами разной величины — красные были самыми большими, фиолетовые — самыми маленькими, и, соответственно своим размерам, они двигались, по его предположению, с разными скоростями.

 

Что еще мог сказать Ньютон о придуманных им корпускулах? Чтобы объяснить преломление света, он сказал, что корпускулы притягиваются веществом призмы. А для объяснения отражения света он снабдил их еще и противоположной способностью — отталкиваться от вещества. В объяснении нуждалось множество явлений, и с ньютоновыми корпускулами получалось примерно то же, что с эфиром: им надо было приписывать все новые и новые противоречивые качества.

Сознавая это, а еще больше, вероятно, предвидя будущие затруднения, Ньютон так же не настаивал на своей теории истечения, как и на дальнодействии через пустоту. «Я гипотез не строю». На том и на другом настаивали его ученики. Они были, как говорят в Риме, правовернее папы.

 

Весь XVIII век господствовала теория истечения, весь XIX век — теория волновая. В долгой борьбе Гюйгенс, казалось, навсегда победил Ньютона: волновая теория, хоть и опиравшаяся на предательский эфир, объясняла' такие явления, в которых никак не могли быть повинны прямолинейно летящие корпускулы.

 

Вот одно из них, прекрасно описанное М. Минартом в его известной книге «Свет и цвет в природе»:

 

«...Ночь. Вдалеке шум автомобиля, приближающегося к нам. Его фары бросают ослепительные лучи света 1на широкую дорогу. Велосипедист случайно пересекает эти ослепительные лучи так, что мы на мгновенье оказываемся в его тени. И тогда внезапно силуэт велосипедиста обрисовывается удивительно красивым светом, как будто излучаемым краем силуэта. Тот же эффект можно наблюдать у пешеходов и у деревьев».

 

Но ведь это значит, что свет способен огибать препятствия? И не «как бы огибать», а действительно делать это.

 

Да. Совершенно так же, как морские волны огибают мол. Это называется дифракцией (все на той же ученой латыни). Однако поток световых частиц, как пригоршня с силой брошенных песчинок, загибаться за край преграды не мог бы. Это неотъемлемое свойство волн. Оно и принесло теории Гюйгенса торжество. Идеи Ньютона должны были отступиться.

 

Но... «никогда не должно пренебрегать предвидениями или гаданиями гениальных людей». Это сказал французский физик и астроном Араго. Замечательно, что сам он, крупный ученый, работая в середине XIX века над биографией Ньютона, не счел нужным хотя бы словом обмолвиться об его корпускулярной теории, — такой незыблемой казалась тогда теория волновая. Он пренебрег «предвидениями и гаданиями» Ньютона, хотя о гениальности его говорил на каждой странице.

 

Оказывается, чтобы не пренебрегать чем-нибудь, надо знать заранее, чего оно стоит!

Араго знал, что корпускулы света — вчерашний день физики, но он не знал, что они еще и предвидение. Такие вещи всегда узнаются задним числом. Когда появились кванты Планка и фотонная теория Эйнштейна, о забытых корпускулах Ньютона вспомнили все.

Но как раз теперь-то воспоминание о них уже ничего существенного не могло дать науке: в физических свойствах фотонов и старых корпускул не было почти ничего общего. Й фотоны появились не потому, что Эйнштейн вспомнил о Ньютоне раньше других, а потому, что одной волнообразно- стью света уже нельзя было объяснить новых фактов. Пришлось увидеть еще и прерывистый град там, где прежде усматривали лишь непрерывный ветер. Но всего удивительней — и об этом рассказ впереди, — что пришлось вернуться к частицам, не отвергая волн.

 

...Хотя цепь, пожалуй, и замкнулась, биография фотона на этом, конечно, не обрывается. Скорее, здесь только и начинается главное. Правда, это главное исторически вовсе не было связано с биографией частицы света: нам надо прикоснуться к физическим прозрениям еще одной революционной теории в естествознании XX века — теории относительности. Надо заглянуть в странный неклассический мир открытых ею законов движения материи. В наших «путевых заметках» без этого не обойтись. (Один остроумный философ говорил, что о гуляющем человеке никогда нельзя сказать, будто он делает крюк. Такой «крюк» и есть самый маршрут прогулки.)

 

Так попробуем, вопреки истории рождения идей теории относительности и вопреки общепринятым традициям рассказа о них, попробуем взять себе в провожатые по странному миру этих идей именно фотон, как одну из «первооснов материи». Может быть, тогда этот мир предстанет перед нами весомо, грубо и зримо — не как абстракция, а как физическая неизбежность.

 

 

К содержанию книги: Научно-художественная книга о физике и физиках

 

 Смотрите также:

  

Физика. энциклопедия по физике

Книга содержит сведения о жизни и деятельности ученых, внесших значительный вклад в развитие науки.
О физике

заниматься физикой как наукой или физикой, которая...

Эта книга адресована всем, кто интересуется физикой. В наше время знание основ физики необходимо каждому, чтобы иметь правильное представление об окружающем мире

Энциклопедический словарь

И старшего. Школьного возраста. 2-е издание исправленное и дополненное. В этой книге  Гиндикин С. Г. Рассказы о физиках и математиках

 

И. Г. Бехер. книга Бехера Подземная физика

В 1667 г. появилась книга И. Бехера «Подземная физика», в которой нашли отражение идеи автора о составных первоначалах сложных тел.

 

Последние добавления:

 

Право в медицине      Рыбаков. Русская история     Криминалист   ГПК РФ