Сергей Капица. Физика 19 века

 

 

Жан Батист Фурье - АНАЛИТИЧЕСКАЯ ТЕОРИЯ ТЕПЛА. Дифференциальные уравнения распространения тепла. Интегралы уравнений движения тепла

 

Мы приводим введение к «Аналитической теории тепла» (1822). Количественные законы теплоты, сформулированные Фурье, необходимым образом должны были предшествовать созданию термодинамики в трудах Карно, Томсона (лорда Кельвина) и Клаузиуса.

 

АНАЛИТИЧЕСКАЯ ТЕОРИЯ ТЕПЛА

 

Первопричины вещей нам неизвестны, но они подчинены простым и постоянным законам, которые могут быть открыты путем наблюдения и изучение которых составляет предмет натуральной философии.

 

Теплом, так же как и тяготением, пронизано все вещество во Вселенной, его лучи занимают все части пространства. Цель нашего сочинения – изложить математические законы, которым следует этот элемент, и отныне эта теория образует одну из самых важных отраслей общей физики.

 

Сведения, которые древние сумели приобрести в рациональной механике, до нас не дошли, и история этой науки, если не считать первых теорем о гармонии, не идет дальше открытий Архимеда. Этот великий геометр дал математические принципы равновесия твердых и жидких тел. Прошло примерно 18 веков, прежде чем Галилей, первый создатель динамических теорий, открыл законы движения весомых тел. Ньютон включил в эту новую науку всю систему мироздания. Последователи этих естествоиспытателей придали этим теориям размах и великолепное совершенство; они показали, что самые разнообразные явления подчинены небольшому числу основных законов, которые повторяются во всех явлениях природы. Было признано, что одни и те же принципы управляют движениями светил, их формой и неравенствами орбит, равновесием и колебаниями морей, гармоническими колебаниями воздуха и звучащих тел, распределением света, капиллярными явлениями, колебаниями жидкостей, словом, самыми сложными действиями всех природных сил, что подтвердило мысль Ньютона: Quod tam paucis tam multa praestet geometria gloriatur[1].

 

 

Но как бы всеобъемлющи ни были механические теории, они никак не применимы к тепловым эффектам. Тепло принадлежит к особому разряду явлений, которые не могут быть объяснены законами движения и равновесия. Люди давно обладают хитроумными инструментами, пригодными для измерения многих из этих явлений; получены очень денные наблюдения, однако нам известны только частные результаты, а математические законы, которые управляют движением тепла, нам неизвестны.

 

Я вывел эти законы на основании долгого изучения и внимательного сравнения ранее известных фактов; в течение нескольких лет я заново, пользуясь самыми точными инструментами, до сих пор не употреблявшимися, наблюдал эти явления.

 

Чтобы обосновать эту теорию, прежде всего надо было выявить и точно определить элементарные свойства, которые определяют тепловые явления. Впоследствии я обнаружил, что все явления, зависящие от действия тепла, сводятся к небольшому числу общих и простых фактов; и, таким образом, все физические вопросы этого рода подчинены математическому анализу. Я пришел к следующему выводу: для того, чтобы численно описать самые разнообразные тепловые явления, достаточно определить для каждого вещества три его основных качества. Действительно, не все тела в одинаковой степени обладают способностью содержать  тепло, получать  или передавать  тепло через свою поверхность и проводить  его в глубину массы. Наша теория очень четко различает эти три специфических качества и указывает на то, как их измерить.

 

Легко вообразить тот интерес, какой представляют эти результаты для физической науки и промышленности и каково может быть их влияние на развитие искусств, требующих употребления и распределения огня. Кроме того, они имеют непосредственное отношение к системе мира, особенно, если принять во внимание те явления, которые происходят у поверхности земного шара.

 

В самом деле, солнечные лучи, в которые эта планета непрестанно погружена, проникают в воздух, землю, воду; его элементы делятся, рассеиваются во все стороны. Проникая в массу земного шара, они поднимали бы все больше и больше его среднюю температуру, если бы это добавочное тепло не уравновешивалось тем, которое излучается со всех точек поверхности и распространяется обратно в небо.

 

Различные климатические зоны, расположенные неодинаково по отношению к действию солнечного тепла, приобрели в течение долгого времени температуру, соответствующую их положению. Но это распределение подвергается изменению в силу многих добавочных причин, таких как: высота и форма земной поверхности, соседство и протяженность континентов и морей, состояние поверхности и направление ветров.

 

Чередование дня и ночи, времен года вызывают на суше периодические изменения, которые возобновляются каждый день или каждый год; но чем дальше от поверхности земли находится точка, в которой измеряется температура, тем эти изменения менее чувствительны. Так» на глубине примерно трех метров нельзя заметить никаких ежедневных изменении, а ежегодные перемены перестают быть заметными на глубине, гораздо меньшей, чем 60 метров. Таким образом, температура на глубине в определенных местах весьма постоянна; но она не одинакова для всех точек одной и тон же параллели; в общем,, она увеличивается по мере приближения к экватору.

 

Тепло, которое Солнце дало земному шару и которое породило разнообразие климатов, подчинено движению, ставшему теперь единообразным. Оно продвигается внутрь массы Земли, целиком проникая, в нее; в то же время, удаляясь от экватора, теряется в пространствах полярных стран.

 

В верхних слоях атмосферы воздух, будучи разреженным и прозрачным, сохраняет только малую часть тепла солнечных лучей; это является главной причиной чрезвычайного холода высоко в горах. Нижние слои, будучи более плотными и более нагретыми землей и водами, расширяются и подымаются; в силу расширения они остывают. Крупные по масштабу движения воздуха, как пассаты, дующие между тропиками, вызываются вовсе не силами притяжения Луны или Солнца. На таком большом расстоянии действие этих светил на разреженный газ вызывает лишь мало ощутимые колебания. Атмосферные массы периодически перемещаются в силу изменения температуры, а вовсе не по причине воздействия сил притяжения.

 

Поверхность вод океана иначе подвергается действию солнечных лучей, и масса воды от полюсов до экватора обогревается очень неравномерно. Эти две постоянно действующие причины, вместе с силой притяжения и центробежной силой, поддерживают движение огромных масс воды в глубинах моря. Они перемещаются и смешивают все части и вызывают те регулярные и общие течения, которые наблюдаются мореплавателями.

 

Тепло, которое излучается поверхностью всех тел и пронизывает упругую среду или пустые воздушные пространства, подчиняется специальным законам и вызывает самые различные явления. Физические объяснения этих явлений известны; математическая теория, мною созданная, дает их точное количественное описание. Эта теория, которая имеет свои собственные теоремы, служит для вычисления всех явлений теплоты как прямой, так и отраженной.

 

Сущность поставленных мною вопросов следует из перечисления главного содержания этой теории. Каковы элементарные качества, которые необходимо наблюдать в каждом веществе, и в чем состоят самые подходящие эксперименты для их точного определения? Если общие законы управляют распределением тепла в твердом веществе, то каково математическое выражение этих законов? При помощи какого анализа можно вывести из этих математических выражений полное решение основных вопросов?

 

Почему температура земли перестает изменяться со временем на глубине, малой по сравнению с радиусом земного шара? Так как каждую изменение движения этой планеты должно вызывать колебания солнечного тепла под поверхностью, то мы можем спросить, какое соотношение существует между длительностью периода и той глубиной, на которой температура становится постоянной?

 

Сколько времени должно было пройти, чтобы климатические зоны могли приобрести те различные температуры, которые сохраняются и сейчас; и какие причины могут теперь заставить их изменить свою среднюю температуру? Почему ежегодные изменения расстояния Земли от Солнца не вызывают на поверхности этой планеты значительных изменений в температуре?

 

По каким признакам можно установить, что земной шар не полностью утратил свою первоначальную теплоту; и каковы точные законы этой потери?

 

Если первоначально это тепло не полностью рассеялось, на что укалывают некоторые наблюдения, то оно может быть огромным на больших глубинах; однако оно не имеет никакого заметного влияния на среднюю температуру поверхности. Наблюдаемые явления обязаны своим происхождением действию солнечных лучей; но независимо от этих источников тепла – основного и первоначального, присущего земному шару, и вторичного, обязанного своим существованием присутствию Солнца,– не имеется ли более всеобщей причины, которая определяет температуру неба  в той части пространства, которую занимает сейчас солнечная система? Так как наблюдаемые явления делают эту причину необходимо, то в чем же будут выводы этой теории в этом абсолютно новом вопросе? Каким образом можно будет определить постоянную величину этой температуры пространства  и вывести отсюда температуру, соответствующую каждой планете?

 

К этому следует добавить вопросы, зависящие от свойств лучистого тепла. Нам точно известны физические причины отражения холода, т.е. отражения наименьшего тепла; но в чем состоит математическое выражение этого явления?

 

От каких общих причин зависит температура атмосферы,– в случае, когда лучи Солнца непосредственно попадают на металлическую или полированную поверхность термометра, или же этот инструмент выставлен ночью, под небом без облаков, для контакта с воздухом, с излучением земных тел и с самыми отдаленными и холодными частями атмосферы?

 

Так как интенсивность лучей, исходящих из одной точки поверхности нагретых тел, варьирует в зависимости от их наклона, согласно закону, установленному опытом, то не имеется ли необходимой математической связи между этим законом и общим равновесием тепла? Какова физическая причина этой разницы в интенсивности лучей?

 

Наконец, если тепло проникает в массу жидкости и определяет ее внутреннее движение через непрерывное изменение температуры и плотности каждой молекулы, то нельзя ли также на основе законов, которыми описываются эти явления, написать дифференциальные уравнения и таким образом получить общие уравнения гидродинамики?

 

Вот те главные вопросы, которые я решил и которые до сих пор еще не были подвергнуты анализу. Если же принять во внимание многочисленные следствия этой математической теории для промышленности и техники, то придется признать всю широту области ее применения. Очевидно, что она охватывает ряд различных явлений и что нельзя избежать их изучения, не отбросив значительную часть науки о природе.

 

Принципы этой теории, так же как и принципы рациональной механики, выведены из очень небольшого числа первичных явлений, причину которых геометры не рассматривают, но которые они допускают как результаты общих наблюдений, подтвержденные всеми опытами.

 

Дифференциальные уравнения распространения тепла выражают самые общие условия и сводят физические вопросы к проблеме чистого анализа, что, в сущности, и есть предмет теории. Они доказываются не менее точно, чем общие уравнения равновесия и движения, и, чтобы сделать это сравнение более ощутимым, мы все время предпочитали пользоваться доказательствами, аналогичными теоремам, которые служат основанием статики и динамики. Эти уравнения получают несколько иную форму, в зависимости от того, выражают ли они распределение лучистого тепла в прозрачных телах или движения, которые вызываются изменением температуры и плотности внутри жидкостей. Коэффициенты их подвержены изменениям, точная мера которых еще неизвестна; но для всех тех явлений природы, которые для нас важнее всего, область изменения температур настолько мала, что изменениями этих коэффициентов можно пренебречь.

 

Уравнения движения тепла, так же как уравнения, описывающие колебания тел, либо колебания жидкостей, принадлежат к недавно открытой области математики, которую было важно усовершенствовать. Установив дифференциальное уравнение, нужно было найти их интегралы – перейти от общего выражения к конкретному решению, подчиненному определенным условиям. Эти трудные исследования требовали специального анализа, основанного на новых теоремах, сущность которых мы здесь не можем изложить. Вытекающий отсюда метод не оставляет места ничему неясному или неопределенному в решениях. Эти решения дают численный ответ – необходимое условие для всех исследований, без них можно прийти только к бесполезным преобразованиям.

 

Те самые теоремы, которые дали нам интегралы уравнений движения тепла, нашли немедленное применение также к вопросам общего анализа и динамики; решение этих вопросов давно было желательным.

 

Углубленное изучение природы является самым плодотворным источником математических открытий. Придавая исследованиям определенную цель, изучение природы не только имеет то преимущество, что оно исключает неясные вопросы и безрезультатные вычисления. Оно, кроме того, является верным средством создания самого анализа и обнаруживает элементы, которые нам важнее всего узнать и которые всегда должны быть, сохраняемы этой наукой; это те основные элементы, которые повторяются во всех явлениях природы.

 

Мы видим, например, что одно и то же уравнение, которое математически рассматривали как выражение абстрактных свойств и которое в этом отношении принадлежит общему анализу, одновременно является уравнением движения света в атмосфере; это же выражение описывает законы диффузии тепла в твердом веществе, и оно же входит во все главные задачи теории вероятностей.

 

Аналитические уравнения, неизвестные древним геометрам, которые Декарт ввел для изучения кривых и поверхностей, не ограничиваются только свойствами геометрических тел или предметом рациональной механики; они распространяются на все общие явления. Не может быть языка более всеобъемлющего, чем аналитические уравнения, и более простого, лишенного ошибок и неясностей, т.е. более достойного для выражения неизменных соотношений реального мира.

 

Рассматриваемый с этой точки зрения математический анализ так же всеобъемлющ, как сама природа; анализ выражает связь всех явлений, дает меру времени, пространству, силе, температуре. Эта трудная наука создается медленно, но она сохраняет все принципы, однажды приобретенные; она постоянно растет и крепнет среди стольких колебаний и ошибок человеческого разума. Главным атрибутом анализа является ясность; у нас нет знаков для выражения неясных понятий. Он сближает самые разнообразные явления и обнаруживает объединяющие их скрытые аналогии. Если материя, как воздух и свет, ускользает от нас в силу своей тонкости, если тела помещены далеко от нас в бесконечности пространства, если человек желает узнать картину небес в последующие эпохи, отделенные от нас многими веками, если явления гравитации и тепла происходят в недрах земного шара, на тех глубинах, которые всегда будут нам недоступными, то математический анализ и тогда осветит законы этих явлений. Он делает их реальными и измеримыми. Математический анализ, являясь способностью человеческого разума, восполняет краткость нашей жизни и несовершенство наших чувств. Еще более замечательно то, что математический анализ идет одной и той же дорогой в изучении всех явлений; он объясняет их одним языком, как бы для того, чтобы подчеркнуть единство и простоту устройства Вселенной и еще раз указать на неизменность истинных законов природы.

 

Теория тепла дает множество примеров этих простых и постоянных положений, которые порождаются общими законами природы. Если бы порядок, установленный в этих явлениях, мог быть охвачен нашими чувствами, то у нас возникло бы ощущение гармонии, сравнимое с чувством гармонии звука.

 

Формы тел бесконечно разнообразны; распределение тепла, проникающего в них, может быть произвольным и неясным; но все неравномерности распределения быстро стираются и исчезают по истечении времени. Ход явления становится более упорядоченным и простым. Наконец, они подчиняются определенному закону, одинаковому для всех случаев, и мы не видим уже никаких заметных следов начальных условий. Все наблюдения подтверждают эти следствия. Анализ, из которого они вытекают, различает и ясно объясняет: 1) общие условия, т.е. те, которые являются результатом естественных свойств тепла; 2) случайное, но существующее влияние формы и состояния поверхностей; 3) переходные явления первоначального распределения.

 

В этом сочинении мы развили все принципы теории тепла и решили все фундаментальные вопросы. Можно было бы изложить их в более сжатой форме, опустив простые вопросы, и дать самые общие выводы; но мы хотели показать происхождение этой теории и ее последующее развитие. Когда понимание уже достигнуто и принципы полностью определены, то предпочтительно немедленно возможно шире использовать аналитические методы, как это мы делали в прежних исследованиях. Отныне мы будем следовать по этому пути в мемуарах, прилагаемых к этому труду, которые в некотором смысле образуют дополнение к нему. Таким образом, мы совместим, насколько это может зависеть от нас, необходимое развитие принципов с точностью, нужной при применении анализа.

 

Темой итого мемуара является теория лучистого тепла, вопрос температуры Земли, температуры жилищ, сравнение теоретических результатов с тем, что мы наблюдали при различных опытах, и, наконец, вывод дифференциальных уравнений движения тепла в жидкостях.

Труд, который мы публикуем сегодня, был написан давно; различные обстоятельства задерживали, а часто прерывали его напечатание. Во время этих перерывов наука обогатилась важными наблюдениями. Принципы нашего анализа, которые сначала не были поняты, стали более известны, и наши выводы были обсуждены и подтверждены другими. Мы сами применили эти принципы к новым вопросам и изменили форму некоторых доказательств. Задержка публикации будет способствовать тому, что труд этот будет более ясным и более полным.

 

Наши первые аналитические изыскания о передаче тепла имели своей темой распределение тепла между разъединенными массами; мы сохранили их в разделе 2 главы III. Вопросы, относящиеся к сплошным телам, которые и образуют, собственно говоря, теорию, были решены несколько лет спустя; эта теория была изложена впервые в рукописи, переданной в Институт де Франс в конце 1807 г., и выдержка из нее была опубликована в Бюллетене наук (Societe philomatique, 1808, p. 112). Мы приложили к этим мемуарам довольно обширные заметки, касающиеся сходимости рядов, диффузии тепла в бесконечной призме, излучения тепла в разреженное пространство, простых построений, способных сделать вывод основных теорем более наглядными, и анализа периодического движения тепла на поверхности земного шара.

 

Наш второй мемуар о распространении тепла был передан Институту 28 сентября 1811 г. Он написан на основании предыдущего доклада и заметок; в нем опущены геометрические построения и детали анализа, которые не имели отношения к вопросам физики, и мы добавили общее уравнение, описывающее состояние поверхности. Эта вторая работа была передана в печать в 1821 г. на предмет включения ее в собрание трудов Академии наук. Она напечатана без всяких изменений и добавлений; текст буквально соответствует рукописи, которая находится в архивах Института.

В этом докладе и предшествующих ему работах можно найти первое изложение приложений, которые не содержатся в теперешнем нашем сочинении. Приложения теории изложены с большей ясностью в последующих докладах, и результаты нашей работы, касающиеся тех же вопросов, указаны в различных, ужо опубликованных статьях. Выдержка, напечатанная в «Annales de chimie et de physique» (1816, t. Ill, p. 350), знакомит с совокупностью наших изысканий. Мы опубликовали в этих анналах две отдельные заметки, касающиеся лучистого тепла (1817, t. IV, р. 128; 1817, t. VI, р. 259).

 

Другие статьи того же сборника дают основные результаты теории и наблюдений; польза и разнообразие термологических сведений были по достоинству оценены знаменитыми редакторами анналов.

В Бюллетене наук (Societe philomatique, 1818, p. 1; 1820, p. 60) напечатана выдержка из доклада о постоянной или меняющейся температуре жилищ, а также изложение основных выводов нашего анализа температуры Земли.

 

Александр Гумбольдт, исследования которого охватывают все главные вопросы философии природы, рассмотрел с новой и очень важной точки зрения наблюдения над температурами, присущими разным климатическим зонам (Мемуар о изотермах, Societe d’Arcueil, t. Ill, p. 462; Мемуар о нижней границе вечных снегов, Annales de chimie et de physique, 1817, t. V, p. 102).

 

Что касается дифференциальных уравнений движения тепла в жидкостях, то об этом было упомянуто в ежегодном отчете Академии наук. Эта выдержка из нашего доклада ясно показывает их предмет и принцип (М. Де Ламбр. Analyse des travaux de l’Academie des Sciences. 1820).

 

Исследование отталкивающих сил, порождаемых теплом, которые предопределяют статические свойства газа, не входило в рассматриваемую нами аналитическую тему. Этот вопрос, связанный с теорией лучистого тепла, был только что рассмотрен знаменитым автором «Небесной механики», которому все главные разделы математического анализа обязаны важными открытиями.

 

Новые теории, изложенные в наших трудах, навсегда связаны с математическими науками и так же, как они, покоятся на неизменных основаниях; они сохранят все элементы, которыми обладают сейчас, и будут приобретать впредь все большую широту. Приборы будут совершенствоваться, и будет умножаться число опытов. Созданный нами анализ будет выводиться более общими методами, т.е. более простыми и более плодотворными, общими для многих классов явлений. Все тепловые свойства и тепловые постоянные будут определены для твердых и жидких тел, для паров и постоянных газов. В различных местах земного шара станут наблюдать температуру почвы на разных глубинах, интенсивность солнечного тепла, его действие, постоянное или меняющееся, на атмосферу, океан и озера; будет измерена постоянная температура неба, свойственная планетарным сферам. Именно теория будет направлять эти измерения и определять их точность, и теория отныне по сможет достигнуть значительного прогресса, который бы не был основан на опыте. Математический анализ может вывести выражение законов природы из общих и простых явлений; но специальное применение этих законов к сложным явлениям требует долгого ряда точных наблюдений.

 

Фурье

Фурье

 

К содержанию: Сергей Петрович Капица: Жизнь науки

 

Смотрите также:

 

ФРАНСУА-МАРИ-ШАРЛЬ ФУРЬЕ. Биография и книги Шарля Фурье.

Фурье-отец был малообразован, но достаточно. умен от природы и заботился не только о наживе, но и доброй репутации торгового.
математика, физика, военного и политического деятеля графа Жана-Батиста-Жозефа.

 

Египетская письменность. Древнеегипетские иероглифы.

ученый Жан-Батист Фурье. Он принимал участие в работе научной комиссии
Оказалось, это брат Жозефа. Шампольона, с которым Фурье уже встречался. Вскоре префект приглашает обоих братьев к себе в гости и показывает им.

 



[1] Скорее меньше, чем больше людей, которые прославили себя в геометрии. (Лат.)