Сергей Капица. Физика и физики 20 века

 

 

Арнольд Зоммерфельд - СТРОЕНИЕ АТОМА И СПЕКТРЫ. Теория поля. Атомизм вещества

 

Большую роль сыграла монография Зоммерфельда «Строение атома и спектры», написанная в 1918 г. Мы приводим предисловие и введение к первому изданию этой книги.

 

СТРОЕНИЕ АТОМА И СПЕКТРЫ

 

Предисловие

 

Со времени открытия спектрального анализа никто из специалистов не сомневался, что проблема атома была бы решена, если бы мы научились понимать язык спектра. Громадный материал, накопившийся в течение 60‑летнпх спектроскопических наблюдений, своим многообразием давал, однако, мало надежды на успех. Семплетняя практика в измерении рент‑геновских спектров дала больше для выяснения вопроса, так как здесь проблема внутреннего строения атома затронута более коренным образом. То, что мы теперь слышим в говоре спектральных линии, есть настоящая музыка сфер, звучащая в атоме, созвучия целых отношений, порядок и гармония, все более увеличивающиеся, несмотря на все разнообразие.

 

На все времена теория спектральных линий будет носить имя Бора, Но еще одно имя будет постоянно связано с ней – пмя Планка. Все законы целых чисел для спектральных линий и атомистики проистекают в конце концов из теории квантов. Она есть тот таинственный орган, на котором природа играет спектральную музыку и ритм которой управляет строением атома и ядра.

 

Введение

 

В первой половине XIX века электродинамика представляла собой ряд различных элементарных законов. Копируя ньютоновские законы тяготения, они утверждали наличие непосредственного дальнодействия, которое с места нахождения одного электрического заряда, или магнита, «перепрыгивая» через все промежуточное пространство, действует на место нахождения другого электрического заряда или магнита.

 

 

Во второй половине XIX века возникло представление, согласно которому электромагнитное поле при своем непрерывном расширении распространяется от точки к точке в пространстве и во времени; это была «полевая теория», противоположная «теории дальнодействия». Эта теория была заложена трудами Фарадея, разработана Максвеллом и увенчана Герцем. Согласно этим представлениям электромагнитное поле постепенно распространяется в пространстве и во времени. Уравнения Максвелла показывают, как векторы электрического и магнитного полей устанавливаются перпендикулярно друг к другу, как в каждом месте поля вследствие изменения магнитной напряженности возникает электрическая напряженность, как электрический ток создает вокруг себя магнитное поле. Промежуточная среда, в том числе и непроводящая, обладает определенной «пропускной способностью» (проницаемостью) и восприимчивостью (диэлектрическая способность как относительно магнитных, так и электрических силовых линий); соответственно этому в каждом месте пространства свойства среды влияют на характер дальнейшего распространения электромагнитного поля.

 

Это воззрение отпраздновало свой полный триумф, когда Герц смог причислить к электромагнитным явлениям такое явление природы, как свет, который был в то время полной загадкой. После того как Максвелл высказал догадку, что свет является векторным полем (он смог вычислить скорость света, исходя только из чисто электрических измерений Коль‑рауша), Герц произвел свой опыт с «потоком электрической напряженности», который прямо продемонстрировал, как излучение отражается, преломляется, фокусируется подходящим вогнутым зеркалом и распространяется в пространстве со скоростью света. Воспроизведенные Герцем электрические волны имели длину волны порядка нескольких метров. От них почти через непрерывную цепь явлений, связанных с тепловым излучением, или инфракрасными волнами, можно перейти к собственно свето‑ным волнам, длина которых все еще составляет несколько микрон (ja). В качестве наибольшего и наиболее грубого звена этой цепи в дальнейшем (причем непосредственно исходя из опытов Герца) были добавлены волпы беспроволочной телеграфии, длина которых исчисляется километрами (с кораблей посылают сообщения при помощи 12‑километровых волн); как мы увищдм в дальнейшем, на другом конце этой цепи она замыкается наиболее малым и тонким звеном – рентгеновским излучением и ему подобным, но более коротковолновым ^‑излучением, а также волновыми излучениями, в общем случае встречающимися при ядерных процессах.

 

Герц умер 1 января 1894 г. в возрасте 37 лет. Можно было бы думать, что работы Герца в последние годы его короткой жизни, а также работы его последователей были посвящены дальнейшим экспериментам с волнами для уточнения и упрочения теории электромагнитных волн. Однако уже последняя экспериментальная работа Герца «Относительно прохождения катодных лучей через тонкие металлические слои» (1891 г.) была нацелена в другом направлении.

 

В теории поля главное внимание стали обращать не на разъяснение причины отклонения силовых линий и обсуждение регулярного распространения поля; теперь стало существенным изучить сингулярности поля, заряды. Лучшие возможности для такого изучения представляет катодная трубка, высоко эвакуированная заряженная трубка, еще более сильно выкачанная, чем так называемая трубка Гейсслера. Здесь получается электричество в «чистом виде», не отягощенное обычным веществом и к тому же прямолинейно движущееся с предельной скоростью: катодные лучи – корпускулярные потоки отрицательного электричества. Правда, сам Герц, а также вначале и его выдающийся ученик Ленард придерживались прямо противоположного представления, считая, что эти лучи имеют волновой характер; однако Герц сознавал значение в будущем исследований с катодными лучами. Этому он содействовал собственными руками, поскольку сам отвлек внимание людей от только что созданных своих работ и наделил ученых следующего поколения на решение новых задач: не распространение силовых линий, а источник их возникновения – заряд будет более интересен для последующего. Завершение Герцем собственно максвелловской теории придало последней колоссальную практическую ценность (например, для электротехники, радиотелеграфной связи), причем теория в завершенном виде позволяет в этих случаях удобным способом определять среднее значение электрических величии. Однако для более глубокого проникновения в отдельные детали, для более ясного понимания элементарных актов требуется более углубленное представление. Место максвелловской электродинамики занимает лорен‑цовская электродинамика, а место непрерывного поля – дискретный атомизм электричества. Таким образом, вместо теории дальнодействия и теории полевого взаимодействия появляется атомистическое представление электромагнетизма – электронная теория.

 

Атомизм вещества был установлен настолько глубоко, насколько это удавалось химической науке; без такого атомизма теряет свой смысл фундаментальный закон химии – закон кратных отношений. Однако нельзя сказать, что не было противников атомистических воззрений. Таким противником был Гёте; однако факты –в особенности факт возможности разложения вещества свидетельствовали против Гёте, разрушали чисто мысленные человеческие построения. Точно так же и довольно крупный ученый и философ Мах рассматривал «атомистическую гипотезу» как нечто преходящее. Он предпочитал описывать процессы, исходя из представлений о непрерывности вещества и непрерывных законов взаимодействия. Последним (среди достойных внимания) противником представления об атоме был энергетик Оствальд.

 

В настоящее время ввиду убедительных успехов применения атомистических взглядов во всех областях физической науки замолкли всякие возражения против атомистических воззрений. Этому во многом содействовало исчерпывающее объяснение броуновского движения, чем со всей очевидностью была подтверждена та часть атомистической гипотезы, которая касалась наличия теплового движения в жидкости. Не менее внушительным свидетельством в пользу атомистического строения твердого тела явилось открытие Лауэ, о котором мы будем говорить в гл. IV...

 

Из атомизма вещества вытекает как необходимое следствие атомизм электричества. Это одновременно было высказано Гельмгольцем и Стоне‑ем. В своем докладе на Фарадеевском чтении в 1881 г. Гельмгольц, основываясь на открытом и математически сформулировапном Фарадеем правиле электролиза, сказал: «Если принять существование атомов химических элементов, то нельзя удержаться от того, чтобы не сделать дальнейшего заключения, что также и электричество, как положительное, так и отрицательное, распадается на определенные элементарные кванты, которые ведут себя как атомы электричества. Каждый ион, до тех пор пока он движется в жидкости, каждой своей валентностью остается связан с электрическим эквивалентом»...

 

Арнольд Зоммерфельд

Арнольд Зоммерфельд

 

К содержанию: Сергей Петрович Капица: Жизнь науки

 

Смотрите также:

 

Литература. Известные работы Альберта Эйнштейна.

Письма Эйнштейна к Арнольду Зоммерфельду и письма Зом-мерфельда

 

Арнольд из виллановы Вилланский. книга Розарий философов

Арнольд Вилланский. Наряду с монахами алхимией занимались и светские лица.. известны сочинения врача и алхимика Арнольда Вилланокого (1240—1311).

 

Зоммерфельд, электронная теория химической валентности

Зоммерфельд же учел поправки, которые требовала теория относительности, и ввел
Теперь Зоммерфельд смог объяснить тонкую структуру не одного только спектра водорода, но и...

 

Химики Коссель и Льюис - теория Льюиса Лэнгмюра

Зоммерфельд, электронная теория химической валентности.

 

ХИМИЯ В РОССИИ В 18 веке - когда была основана Академия...

Зоммерфельд, электронная теория химической валентности.

 

Кризис теории флогистона. основные черты развития химии во...

Зоммерфельд, электронная теория химической валентности.