Нефтегазовая геология

 

 

Цементация и уплотнение пород. Шлиф ортокварцита

 

После образования в породе порового пространства или системы пор, первичных либо вторичных, либо тех и других, они обычно начинают видоизменяться под влиянием одного или сразу обоих наиболее универсальных вторичных процессов, каковыми являются цементация и уплотнение. Развитие этих процессов ведет к уменьшению объема порового пространства и проницаемости пород. Они могут проявляться как во время отложения осадков, так и на постседиментационной стадии. Обычно пористость осадочных пород уменьшается с увеличением глубины их залегания, температуры и возраста [67].

 

Цементация. Цементация пород отчасти является первичной; цемент может осаждаться или отлагаться совместно с классическим материалом. Кремнезем, карбонаты и другие растворимые вещества осаждаются одновременно с отложением обломочного материала. Первичный цементирующий материал подвергается позднее перекристаллизации, и такой перекристаллизованный цемент затем лишь с трудом можно отличить от материала, привнесенного после консолидации осадка. Песчаники, содержащие кремневый цемент, отложившийся вместе с песчаными зернами или осажденный в процессе диагенеза, называются ортокварцитами в отличие от метакварцитов, которые образуются при метаморфизме. Как считает Крынин, 90-95 % кварцитовых песчаников Аппалачей имеют первичный кварцевый цемент [68]. Если это так, то можно надеяться на лучшие перспективы нефтегазоносности Аппалачского региона. В противном случае прогноз был бы значительно менее благоприятен, ибо в связи с существующими представлениями об образовании кварцитовых песчаников в процессе регионального диастрофизма и метаморфизма все потенциальные породы-коллекторы должны были стать непроницаемыми и вся нефть должна быть из них выжата.

 

Нерастворимые, а поэтому не являющиеся хемогенными осадками вещества могут вести себя подобно хемогенному цементу, заполняя пустоты, уплотняя породу и скрепляя отдельные ее зерна. Особенно плохо растворимы глинистые минералы, однако они неустойчивы физически и быстро реагируют на изменения давления, температуры и характер вод. В тех или иных количествах они отлагаются в виде различного рода обломков почти во всех осадках, являясь обычным цементирующим материалом.

 

 

Некоторые глинистые минералы замещаются хлоритом, серицитом и карбонатами. При выжимании воды из глины и илов последние вдавливаются в тончайшие промежутки между зернами и служат связующим материалом, который скрепляет отдельные песчаные зерна. Обломочными породами, сцементированными первичным обломочным материалом, являются, например, граувакки. Глины, образовавшиеся в результате выветривания полевых шпатов, заполняют поры в породах формации Чанак (третичного возраста) на восточном борту бассейна Сан-Хоакин в Калифорнии. Здесь они играют роль скрепляющего материала и, создавая препятствие на пути движения нефти по восстанию коллекторских пластов, способствуют образованию нескольких залежей нефти. Другой вид обломочного цемента встречается в песках формации Мак-Меррей (мел) близ Атабаска-Лендинг в северо-восточной Альберте. Эти пески сцементированы вязкой тяжелой нефтью, которая отлагалась, вероятно, вместе с песчаными зернами. При удалении нефти песок рассыпается на отдельные зерна.

 

Химическое осаждение цементирующих материалов в порах обломочных пород в течение диа- или катагенеза представляет собой фактор вторичного изменения их пористости и проницаемости. Наиболее распространенными цементирующими материалами в обломочных породах-коллекторах являются, в порядке убывания распространенности, кварц, кальцит, доломит, сидерит, опал, халцедон, ангидрит и пирит. Часто в составе цемента одной породы может присутствовать сразу несколько минералов [69],

 

Шлиф ортокварцита

4-14. Шлиф ортокварцита, в котором видны регенерация зерен и перекристаллизация, заметно изменяющие первичную структуру порового пространства породы (Кryninе, Journ. Geol., 56, p. 152, Fig. 12, 1948).

1 ‑ зерна кварца; 2 ‑ регенерационный кремнезем; 3 ‑ доломит; 4 ‑ пирит; 5 ‑ поровое пространство.

 

В большинстве песчаников наряду с тем или иным развитием структур инкорпорации зерен можно обнаружить следы цементации за счет взаимного растворения соприкасающихся зерен на контактах, растворения тонкозернистой кремнистой основной массы, привноса кремнезема из внешних источников (см. 3-3). Цементирующим материалом могут служить самые разнообразные минералы. Изучение 40 образцов керна полевошпатовых песчаников из скважин, пробуренных в центральной и южной Калифорнии, показало наличие в открытых порах и внутри сложенной обломочными глинистыми минералами основной массы этих пород следующих вторичных минералов: кварца, альбита, ортоклаза, микроклина, доломита, кальцита, анатаза, каолинита, глауконита, барита и пирита [70].

 

Кварц представляет собой основной хемогенный цементирующий материал многих обломочных пород-коллекторов и осаждается первым среди других хемогенных связующих веществ [71]. Кремнезем не обнаружен в составе пластовых вод, поэтому источники больших его количеств в породах в виде цемента, так же как и механизм осаждения, явились предметом многочисленных исследований, но до сих пор полностью не выяснены [72], Предполагают следующие источники кремнезема: 1) кремнезем, осаждавшийся из кремнийсодержащих поверхностных или метеорных вод; 2) кремнезем, приносимый реками в океан, где он химически осаждался вместе с песком; 3) химически осажденный кремнезем, образовавшийся в результате растворения мелких зерен кремнийсодержащих минералов на контактах песчаных зерен при раздавливании и истирании первых в процессе отложения или под давлением в течение диа- и катагенеза (принцип Рике) [73]; 4) кремнезем, выносимый растворами из глинистых минералов [74] и транспортируемый водами, выжатыми из глинистых отложений в процессе их уплотнения. Характер вторичного разрастания кремнезема и его воздействие на песчаник показаны на 4-14.

 

Вторичное разрастание кристаллов кварца свойственно так называемым «искристым песчаникам» формации Варко (нижний эоцен), которые слагают главный продуктивный горизонт на нефтяном месторождении Петролеа в восточной Колумбии [75] (6-37). Эти породы получили свое наименование благодаря тому, что в обнажениях мириады кристаллов вторичного кварца сверкают на солнце своими гранями. Песчаники имеют среднюю пористость 12,5% и проницаемость 79 миллидарси, причем пористость их преимущественно первична.

 

Источники появления в породах карбонатного цемента более легко объяснимы по сравнению с источниками кремнезема, поскольку даже в песчаниках обычно содержится некоторое количество карбонатов, которые могут быть растворены и переотложены в другом месте. Карбонатный цемент в песчаниках может присутствовать в форме идиоморфных кристаллов кальцита или доломита, находящихся в промежутках между песчаными частицами; он может покрывать поверхности песчаных зерен, являясь связующим материалом между ними, а также быть образован остатками карбонатных окаменел остей, как распознаваемыми, так и концентрирующимися в пятна неопределимых обломков.

 

Поскольку цементация породы часто происходит за счет растворения ее же собственного материала, эти два процесса действуют в противоположных направлениях. Там, где растворение превалирует над отложением цемента, пористость породы возрастает, и наоборот, на участках, где преобладает отложение, пористость уменьшается. Растворение и цементация неузнаваемо изменяют структуру норового пространства и особенно проницаемость породы [76]. С образованием залежи углеводородов прекращается циркуляция поровых вод, а вместе с ней и деятельность процессов растворения и цементации. Отсюда мы можем заключить, что растворение и цементация в природных резервуарах происходит почти исключительно до аккумуляции нефти и газа в пласте.

 

Уплотнение. В геологии нефти и газа важны три результата воздействия на породы давления: 1) уплотнение коллекторских отложений; 2) уплотнение отложений, не являющихся коллекторами, особенно глинистых; 3) сжатие пластовых флюидов. Мы коснемся здесь только уплотнения отложений, которые служат коллекторами нефти и газов.

 

Уплотнение пород-коллекторов происходит главным образом под влиянием увеличивающейся нагрузки перекрывающих отложений. Такое воздействие на породу, подобно цементации, приводит к сокращению пористости. Уменьшение объема порового пространства при уплотнении в замкнутой системе природного резервуара вызывает увеличение пластового давления. Уплотнение особенно значительно в коллекторах, содержащих глинистый или коллоидный материал. При возрастании горного давления из них выжимаются огромные массы адсорбированной воды, и поскольку глинистые и коллоидные материалы чрезвычайно пластичны, они могут растекаться между зернистыми частицами, образуя цемент и тем самым снижая пористость. Чистые песчаники, вскрытые на забоях самых глубоких скважин, достигающих 15 000 футов, не несут следов раздробления зерен (R.В. Hutchison, личное сообщение); это указывает на то, что подобные породы вполне могут оказаться продуктивными на больших глубинах². В то же время заиленные и загрязненные песчаники становятся непроницаемыми под давлением и на гораздо меньших глубинах. Однако даже в чистых песчаниках наблюдается увеличение с глубиной количества точек соприкосновения зерен, что свидетельствует об уменьшении объема порового пространства пород при все большем

 

Различают два вида уплотнения пород-коллекторов: пластическое и упругое. Пластическое уплотнение выражается в проникновении мягких акцессорных минералов основной массы, таких, как глинистые минералы, продукты выветривания и коллоиды, в открытые поры по мере увеличения давления и вытеснения из них воды. В результате этого породы теряют пористость, сокращается их проницаемость и происходит общее уменьшение их объема (см. 9-13). Пластическое уплотнение наблюдается в основном на ранней стадии диагенетического преобразования отложений, когда из них удаляются огромные количества воды. Однако из-за продолжающегося воздействия нагрузки вышележащих пород сокращение пористости пород вследствие пластического уплотнения происходит в течение длительного времени и после завершения стадии диагенеза, хотя со все более уменьшающейся скоростью.

 

увеличение плотности пород с глубиной на месторождении Гарбер в Оклахоме. В возрастании плотности здесь играют определенную роль как цементация, так и уплотнение, и очень трудно, а иногда и вообще невозможно отделить один из этих процессов от другого. В песчаниках пластическое уплотнение устанавливается по наличию вдавленных в поры и деформированных частиц мягких минералов, по перераспределению зерен, более плотной их упаковке, раздроблению краев зерен и более тесной приспособленности последних к материалу основной массы. Порода, претерпевшая пластическую деформацию, даже частично не восстанавливает при снятии давления свой первоначальный объем. Следовательно, объем таких пород является функцией максимальной величины горного давления, которому они подвергались в течение своей геологической истории.

Породы, подвергшиеся упругому уплотнению, наоборот, могут при снижении давления восстанавливать, хотя бы частично, свой первоначальный объем. Такое явление особенно вероятно в твердых песчаниках. Оно обусловлено тем, что энергия, накопленная в песчаных зернах при повышении горного давления, освобождается при его ослаблении. По-видимому, можно провести некоторую аналогию между этим явлением и накоплением энергии в сжатой пружине. Однако пласт песчаника, содержащий какое-то количество пластичных минералов и испытывающий воздействие нагрузки вышележащих пород, которая вызывает еще большее неупругое уплотнение частиц, никогда не восстанавливает полностью при снятии давления своей исходной мощности. Какой величины может достигать упругое сжатие пород и каково количество энергии, которое может накопиться в них при этом,- это вопросы, относительно которых мнения исследователей разделились; конкретные же данные весьма скудны.

 

Мейнцер [78] рассматривал упругое сжатие водоносных горизонтов в качестве источника энергии, вызывающей артезианское истечение в некоторых скважинах. Его доказательства базировались на том, что вес столба воды между пьезометрической поверхностью и водоносным горизонтом меньше веса соответствующих по мощности покрывающих пород. Давление воды внутри водоносного пласта распределяется по всем направлениям и помогает выдерживать вес перекрывающих его пород. Обычно при отборе воды из водоносного пласта пьезометрическая поверхность снижается, однако Мейнцер считал, что падение направленного вверх гидростатического давления в пласте компенсируется опусканием перекрывающих пород. Другими словами, соприкасающиеся зерна в этом случае принимают на себя большую часть давления, чем тогда, когда давление воды было выше. По мере повышения давления нагрузки зерна испытывают упругое сжатие, и, вероятно, они вновь увеличились бы в объеме, если бы упало горное давление. Сжатие сокращает объем порового пространства, повышает давление на флюиды и заставляет воду двигаться к поверхности в фонтанирующих артезианских скважинах. Но отличить сжатие твердой фазы пород-коллекторов от сжатия пластовых флюидов, таких, как воздух, газ и вода, очень трудно, поскольку оба этих эффекта одинаково сказываются на дебите флюидов в скважинах. Концепция сплошной флюидной фазы, распространяющейся от уровня грунтовых вод до очень больших глубин и способной передавать давление в соответствии с определенным градиентом гидростатического давления, является в большинстве случаев наиболее простым и реальным объяснением природы подземного гидростатического давления. Более того, по сравнению со сжатием различных флюидов влияние, оказываемое на движение пластовых флюидов упругим сжатием пород, ничтожно.

 

Те же представления были использованы Джилули и Грантом [791 в их попытке объяснить проседание грунтов в районе Лонг-Бича, Калифорния. Они предполагали, что падение пластового давления флюидов в результате отбора нефти было вполне достаточным, чтобы вызвать соответствующее увеличение эффективной нагрузки от перекрывающих пород. Дополнительная нагрузка на песчаные зерна обусловила упругое сжатие песчаной породы, которое привело к сокращению объема последней и проседанию всей перекрывающей ее толщи до самой поверхности.

 

Одна из проблем, связанных со сжатием песчаников, заключается в установлении различия между воздействием на них пластического и упругого сжатия. Можно ожидать, содержащих то или иное количество глин и других пластичных материалов; тем не менее определить относительное влияние каждого из них на погребенные породы-коллекторы практически невозможно. Низкая сжимаемость кварцитов и песчаников [80] приводит к выводу, что уплотнение, испытываемое обломочными породами-коллекторами, обусловливается больше пластическим сжатием, чем упругим. Аналогичным образом легкость, с которой карбонатные минералы и породы перекристаллизуются и заполняют все имеющиеся поры, заставляет предполагать, что большинство карбонатных пород испытывает скорее пластическое, чем упругое сжатие.

 

 

К содержанию: Леворсен: ГЕОЛОГИЯ НЕФТИ И ГАЗА

 

Смотрите также:

 

Поиски и разведка месторождений  Углеводороды нефть, газ, конденсат  РЕСУРСЫ МОРЯ. Нефть, газ

 

Закон О нефти и газе о недропользование  Размещение нефтяных и газовых месторождений.