Вся электронная библиотека      Поиск по сайту

 

БИОЛОГИЯ ПОЧВ

ПРЕВРАЩЕНИЯ КИСЛОРОДА

 

биология почвы

 

Смотрите также:

 

Почва и почвообразование

 

Почвоведение. Типы почв

почвы

 

Химия почвы

 

Круговорот атомов в природе

 

Книги Докучаева

докучаев

 

Происхождение жизни

 

Геология

геология

Основы геологии

 

Геолог Ферсман

 

Черви и почвообразование

дождевые черви

 

Дождевые черви

 

Вернадский. Биосфера

биосфера

 

Геохимия - химия земли

 

Гидрогеохимия. Химия воды

 

Минералогия

минералы

 

Земледелие. Агрохимия почвы

 

Справочник агронома

 

Удобрения

 

Происхождение растений

растения

 

Ботаника

 

Биология

биология

 

Эволюция биосферы

 

Земледелие

 

растения

 

Тимирязев – Жизнь растения

 

Жизнь зелёного растения

зелёные растения

 

Геоботаника

 

Мхи

 

Водные растения

 

Общая биология

общая биология

 

Лишайники

 

Мейен - Из истории растительных династий

Мейен из истории растительных династий

 

Удобрения для растений

 

Биографии биологов, почвоведов

Биографии почвоведов

 

Эволюция

 

Микробиология

микробиология

 

Пособие по биологии

 

Кислород — самый распространенный химический элемент на Земле.

 

Он составляет по массе большую часть гидросферы в составе воды (89%), почти половину минералов литосферы (47%) и в свободном состоянии находится в атмосфере (21%). Его наличие в воздухе определяет все основные окислительно-восстановительные реакции на поверхности нашей планеты. В биомассе живых организмов 50-60% кислорода в составе всех важнейших макромолекул клетки — белков, жиров, углеводов, нуклеиновых и аденозин-фосфорных кислот.

 

Круговорот кислорода неразрывно связан с циклом углерода и превращениями водорода.

 

Молекулярный кислород образуется при разложении молекулы воды в процессе фотосинтеза и вновь включается в Н20 при биологическом окислении во время дыхания. Кислород, связанный с углеродом, участвует в процессах массообмена, переходя из газообразного состояния в молекуле диоксида углерода в органические соединения и обратно (см. 70).

 

Эти два звена связаны между собой через водород, который меняет свой энергетический уровень за счет энергии солнечного излучения, поглощаемого фотосинтезирующими организмами. Водород вновь связывается с кислородом в процессах биологического окисления. В результате этого перехода водорода запасается биохимическая энергия, обеспечивающая все проявления жизни. Часть молекулярного кислорода прямо включается в состав органических веществ, например, при окислении углеводородов.

 

Если процесс генерации молекулярного кислорода осуществляется в надземном растительном ярусе за счет фотосинтеза, то связывание кислорода протекает в основном в почве в результате окислительных превращений органических веществ почвенными микроорганизмами. Кислород потребляется также при нитрификации, окислении метана и сероводорода.

 

Интенсивность процессов образования и потребления 02 и С02 зависит от сезона, так как она является следствием активности живых систем. Известно, например, что концентрация С02 в атмосфере максимальна зимой, когда снижается или прекращается фотосинтез, а процессы деструкции органических веществ продолжаются. Летом содержание С02 в воздухе минимально. Доля С02, образуемого животными, не превышает 10%, остальная часть выделяется при разложении органических веществ почвенными микроорганизмами, в первую очередь грибами (до 80%).

 

С фотосинтезом связано происхождение молекулярного кислорода в атмосфере Земли. Первым источником кислорода были, по-видимому, предки цианобактерий — фотосинтезирующие прокариоты, выделяющие 02.

 

Кислородный фотосинтез закрепился в процессе эволюции у водорослей и высших растений. Таким образом, весь свободный кислород в атмосфере Земли биогенного происхождения.

 

Молекулярный кислород, как конечный акцептор электронов при окислении субстратов дыхания, абсолютно необходим для аэробной жизни. Для строго анаэробных организмов кислород токсичен.

 

Известны токсические эффекты молекулярного кислорода и его производных и для аэробов: происходит окисление клеточных метаболитов, которые активно функционируют в восстановленной форме. Особенно чувствительна к молекулярному кислороду нитрогеназная система азотфиксации. При фотосинтезе описано явление фотодинамического эффекта, в результате которого возникает синглетный кислород, токсическое действие которого проявляется в повреждении важных клеточных компонентов. Функцию «тушения» синглетного кислорода выполняют пигменты каротиноиды, содержащиеся у большинства организмов, живущих в условиях прямого освещения. Для прокариот очень токсичны продукты неполного восстановления 02 — супероксидный и гидроксидный радикалы, зашита от которых связана с образованием ферментов — супероксиддисмутазы, каталазы, пероксидазы, разлагающих перекись водорода (Н202).

 

 

 

К содержанию книги: Почвоведение - биология почвы

 

 

Последние добавления:

 

Происхождение и эволюция растений 

 

Биографии ботаников, биологов, медиков   

 

Книги по русской истории   Император Пётр Первый